Menu

Close

Clathrin plaques form mechanotransducing platforms

Agathe Franck, Jeanne Laine, Gilles Moulay, Michael Trichet, Christel Gentil, Anais Fongy, Anne Bigot, Sofia Benkhelifa-Ziyyat, Emmanuelle Lacene, Mai Thao Bui, Guy Brochier, Pascale Guicheney, Vincent Mouly, Norma Beatriz Romero, Catherine Coirault, Marc Bitoun, Stephane Vassilopoulos

Preprint posted on May 14, 2018 https://www.biorxiv.org/content/early/2018/05/14/321885?%3Fcollection=

Clathrin plaques are the new focal adhesions: Adhesive clathrin plaque association with the cytoskeleton provides a novel platform for mechanosensing, including the regulation of YAP/TAZ signaling.

Selected by Amanda Haage

Categories: biophysics, cell biology

Why This Is Cool – The authors provide evidence that two relatively new discoveries in cell biology, mechanotransduction via YAP/TAZ signaling and large clathrin plaque structures on the plasma membrane, work together to produce a novel platform for sensing mechanical input, connecting and regulating the cytoskeleton, and integrating various signaling pathways. These are the roles that have previously been established for focal adhesions. It makes sense that cells could complete these essential tasks in a variety of ways using other large membrane-associated protein complexes. The authors provide exhaustive evidence for the mechanisms and relevance of this new system. First, they demonstrate using beautiful images of immunogold labeling with metal-replica EM (Fig1) the precise organization of the clathrin plaques surrounded by branched actin and desmin intermediate filaments on primary mouse myotubes. Next they show that these structures respond to mechanical stimuli by subjecting the myotubes to cyclic stretching. Upon stretching the plaques decrease in size supposedly due to an increase in endocytosis and the YAP/TAZ mechanotransducers canonically accumulate in the nucleus with a concurrent increase in their target genes’ expression levels. Interestingly, myotubes without clathrin plaques had high levels of YAP/TAZ nuclear staining without stretching with no obvious response to stretch. The authors go on to demonstrate this is because the clathrin plaques act as sticky nets that sequester YAP/TAZ until the cell receives a mechanical input. They propose that YAP/TAZ gets stuck at the actin network surrounding clathrin plaques largely through an interaction between TAZ and Dynamin 2. Myotubes without Dynamin 2 lose their actin organization, and their ability to translocate YAP/TAZ in response to stretch. Now that they have established a mechanism for how clathrin plaques can act as mechanosensors, the authors go on to show the relevance of this mechanism in vivo. A type of centronuclear myopathy is caused by mutations in Dynamin 2. By using a knock-in mouse model for the most common human mutation linked to this disease, they demonstrate similar phenotypes to the Dynamin 2 knockout myotubes. These mice were found to have disorganized clathrin plaques, TAZ, and desmin in their muscles. In addition, primary culture of their mytotubes revealed a decrease in TAZ nuclear localization without mechanical input. To really drive the point home, the authors also repeat these findings in immortalized myotubes from a centronuclear myopathy human patient.

Fig. 1 (adapted from preprint). Clathrin-coated plaques are required for intermediate filament organization. (A) Immunofluorescent staining of α-actinin 2 (green), CHC (magenta), and actin (red) in extensively differentiated mouse primary myotubes. Bars are 10 µm and 2 µm for insets. (B) Survey view of unroofed primary mouse myotube differentiated for 15 days. (C) (D) Higher magnification views corresponding to the boxed regions in b.

 

Why I Selected It – The idea that cells can sense and respond to the physical properties of their microenvironment has always fascinated me. It’s a newer concept that has burst into a huge field of cell biology. We are now getting beyond the initial discoveries of this phenomenon and learning just how much it permeates every part of cell biology. Mechanotransduction is not just a field for cell migration or extracellular matrix people, but is a field for everyone.

Open Questions –

  1. Has YAP/TAZ translocation via endocytosis been directly observed? Is it something that could be observed via live imaging?
  2. Do the clathrin plaques ever recover in size and YAP/TAZ content after extended periods of relaxation?
  3. Could the Dynamin 2 – TAZ interaction be a realistic drug target for centronuclear myopathy?

Related References –

  1. What is YAP/TAZ?
    1. Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediates signaling and mechanotransduction. Exp Cell Res. (2016) 10;343(1):42-53/
  2. What are clathrin plaques?
    1. Lampe M., Vassilopoulos S., Merrifield C. Clathrin coated pits, plaques and adhesion. J Struct Biol. (2016) 196(1):48-56.
  3. Mutations in Dynamin 2 cause centronuclear myopathy
    1. Bitoun M., Maugenre S., Jeannet PY., Lacene E., Ferrer X., Laforet P., Martin JJ., Laporte J., Lochmuller H., Beggs AH., Fardeau M., Eymard B., Romero NB., Guicheney P. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet. (2005) 37(11):1207-9.

 

Posted on: 6th June 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the biophysics category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

    Simao Coelho, Jongho Baek, Matthew S Graus, et al.



    Selected by Lars Hubatsch

    Phase transition and amyloid formation by a viral protein as an additional molecular mechanism of virus-induced cell toxicity

    Edoardo Salladini, Claire Debarnot, Vincent Delauzun, et al.



    Selected by Tessa Sinnige

    Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

    Simao Coelho, Jongho baek, Matthew S Graus, et al.



    Selected by Sam Barnett

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy

    Carlo Bevilacqua, Héctor Sánchez Iranzo, Dmitry Richter, et al.



    Selected by Stephan Daetwyler

    1

    Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex

    Diego Gauto, Leandro Estrozi, Charles Schwieters, et al.



    Selected by Reid Alderson

    1

    Structure of a cytochrome-based bacterial nanowire

    David J Filman, Stephen F Marino, Joy E Ward, et al.



    Selected by Amberley Stephens

    Strong preference for autaptic self-connectivity of neocortical PV interneurons entrains them to γ-oscillations

    Charlotte Deleuze, Gary S Bhumbra, Antonio Pazienti, et al.



    Selected by Mahesh Karnani

    Retrieving High-Resolution Information from Disordered 2D Crystals by Single Particle Cryo-EM

    Ricardo Righetto, Nikhil Biyani, Julia Kowal, et al.



    Selected by David Wright

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    2

    The structural basis for release factor activation during translation termination revealed by time-resolved cryogenic electron microscopy

    Ziao Fu, Gabriele Indrisiunaite, Sandip Kaledhonkar, et al.



    Selected by David Wright

    DNA microscopy: Optics-free spatio-genetic imaging by a stand-alone chemical reaction

    Joshua A. Weinstein, Aviv Regev, Feng Zhang



    Selected by Theo Sanderson

    2

    Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma.

    Andrea Palamidessi, Chiara Malinverno, Emanuela FRITTOLI, et al.



    Selected by Tim Fessenden

    1

    Actomyosin-driven tension at compartmental boundaries orients cell division independently of cell geometry in vivo

    Elena Scarpa, Cedric Finet, Guy Blanchard, et al.



    Selected by Ivana Viktorinová

    Also in the cell biology category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Actomyosin-II facilitates long-range retrograde transport of large cargoes by controlling axonal radial contractility

    Tong Wang, Wei Li, Sally Martin, et al.



    Selected by Ivana Viktorinová

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Stable knockout and complementation of receptor expression using in vitro cell line derived reticulocytes for dissection of host malaria invasion requirements

    Timothy J Satchwell, Katherine E Wright, Katy L Haydn-Smith, et al.



    Selected by Alyson Smith

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    Activation of intracellular transport by relieving KIF1C autoinhibition

    Nida Siddiqui, Alice Bachmann, Alexander J Zwetsloot, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    1

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Franco Iborra

    1

    Basal extrusion drives cell invasion and mechanical stripping of E-cadherin

    John Fadul, Gloria M Slattum, Nadja M Redd, et al.



    Selected by William Hill

    Ribosomal DNA and the rDNA-binding protein Indra mediate non-random sister chromatid segregation in Drosophila male germline stem cells

    George Watase, Yukiko Yamashita



    Selected by Maiko Kitaoka

    An F-actin shell ruptures the nuclear envelope by sorting pore-dense and pore-free membranes in meiosis of starfish oocytes

    Natalia Wesolowska, Pedro Machado, Celina Geiss, et al.



    Selected by Maiko Kitaoka

    1

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.



    Selected by Lorenzo Lafranchi

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.

    AND

    Live-cell single RNA imaging reveals bursts of translational frameshifting

    Kenneth R Lyon Jr, Luis U Aguilera, Tatsuya Morisaki, et al.



    Selected by Nicola Stevenson

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    2

    Close