Menu

Close

Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages is necessary for functional spinal cord regeneration in zebrafish

Themistoklis M. Tsarouchas, Daniel Wehner, Leonardo Cavone, Tahimina Munir, Marcus Keatinge, Marvin Lambertus, Anna Underhill, Thomas Barrett, Elias Kassapis, Nikolay Ogryzko, Yi Feng, Tjakko J. van Ham, Thomas Becker, Catherina G. Becker

Preprint posted on May 28, 2018 https://www.biorxiv.org/content/early/2018/05/28/332197.1

To regenerate, or not to regenerate? Researchers shed light on key immune mechanisms and spatiotemporal dynamics that orchestrate spinal cord regeneration in zebrafish.

Selected by Shikha Nayar

Context and Background

The zebrafish is a well-recognized model system used for vertebrate regeneration research, including, but not limited to, heart, liver, brain, fin, and spinal cord regeneration1. The observation that a robust immune response is elicited upon spinal cord injury is not a novel one2; yet key mechanisms, cell types, and spatiotemporal dynamics are still to be elucidated in a vertebrate system. Macrophages, neutrophils, and microglia are fundamental innate immune cell types that elicit an immediate immune response upon injury, yet their dynamics are rapid and thus difficult to study. The zebrafish embryo is a unique model system as it only possesses a functional innate, but not adaptive, immune system at embryonic and larval stages. This makes it highly effective for dissecting mechanisms of innate immune cell infiltration and axon growth during spinal cord regeneration in vivo (Figure 1).

Figure 1. Schematic of multistep process of spinal cord regeneration in zebrafish (Figure 1a from Mokalled et al., 2016).

 

Key findings

How do infiltrating immune cells control cytokine dynamics to promote mechanisms of regeneration? In this preprint, Tsarouchas et al use the zebrafish embryo to show that peripheral macrophages control a delicate balance of pro-regenerative and pro-inflammatory cytokine production to promote successful axon regeneration. They show that macrophages, but not neutrophils, are necessary for the regulation and maintenance of this cytokine balance. They conclude that an induction of tnfα but reduction of il1β is necessary and sufficient to sustain successful axon regeneration through development. Importantly, the tight spatiotemporal control of cytokine induction was key for long-term regenerative success; early induction of a pro-inflammatory response, but a switch to an anti-inflammatory response after 24 hours is needed for effective regeneration. Notably, macrophage mutants were unable to switch between these biphasic cytokine states, resulting in unsuccessful axon regeneration.

 

Importance of this paper

The textbook view in immunology is that sustained induction of pro-inflammatory cytokines, such as tnfα, is responsible for chronic injury and a failure to elicit repair responses. This study importantly challenges this dogma by dissecting the dynamics of cytokine production through injury and development, to show that appropriate and timely induction of pro-inflammatory cytokines can in fact play a key role in repair. Not only will these findings inform future directions in regeneration research, but they could shape our view of immune dynamics in other disease models, such as Inflammatory Bowel Disease, that also currently view cytokines like tnfα as detrimental to healing and repair processes.

 

Open questions

The authors do discuss the intricacies of axon bridging as a potential therapeutic strategy, as shown in neutrophil-depleted mutants, however this idea could be further explored. How does axon bridging naturally take place, and what immune mechanisms are necessary to orchestrate the process? How do patients with defects in innate immune populations such as neutrophils and macrophages, resolve injury induced by noxious stimuli? What are the cytokine levels and spatiotemporal dynamics in patients with dysfunctional macrophages? Could these patients be targeted for “personalized cytokine induction”? Further, this study is carried out with the goal of dissecting primarily innate immune mechanisms of repair; how would these dynamics be altered with the emergence of a functional adaptive immune system in vivo later in development? Investigating the intersection of immunology, regeneration, and the use of novel model systems, will help us answer these questions and provide new avenues for translational approaches in spinal cord regeneration.

 

References

  1. Gemberling A, Bailey TJ, Hyde DR, Poss KD. The zebrafish as a model for complex tissue regeneration. Trends in Genetics. 2013;29(11):611-620. doi:10.1016/j.tig.2013.07.003.
  2. Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DYR, Poss KD. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science.  2016;6312(354):630-634. doi:10.1126/science.aaf2679.
  3. Trivedi A, Olivas AD, Noble-Haeusslein LJ. Inflammation and Spinal Cord Injury: Infiltrating Leukocytes as Determinants of Injury and Repair Processes. Clinical neuroscience research. 2006;6(5):283-292. doi:10.1016/j.cnr.2006.09.007.

Tags: inflammation, macrophages, regeneration, spinal cord, zebrafish

Posted on: 30th July 2018

Read preprint (No Ratings Yet)




  • Author's response

    Thomas Becker, Catherina Becker, Themistoklis Tsarouchas shared

    Shikha makes some very good points on the complexity of regeneration in her discussion of our study. We were surprised to find such a high level of complex tissue interactions of immune and other cell types already in this “simple” larval zebrafish system during spinal cord regeneration. We hope that the excellent optical and genetic accessibility of this system will allow us to discover important principles of successful spinal cord repair with translational relevance.

    Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    Revealing the nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy

    Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, et al.



    Selected by Gautam Dey

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis

    Min Zhu, Hirotaka Tao, Mohammad Samani, et al.



    Selected by Natalie Dye

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Synergy with TGFβ ligands switches WNT pathway dynamics from transient to sustained during human pluripotent cell differentiation

    Joseph Massey, Yida Liu, Omar Alvarenga, et al.



    Selected by Pierre Osteil

    1

    3D Tissue elongation via ECM stiffness-cued junctional remodeling

    Dong-Yuan Chen, Justin Crest, Sebastian J Streichan, et al.



    Selected by Sundar Naganathan

    EGFR signaling coordinates patterning with cell survival during Drosophila epidermal development

    Samuel Henry Crossman, Sebastian J Streichan, Jean-Paul Vincent



    Selected by Sarah Bowling

    1

    Damage-induced reactive oxygen species enable zebrafish tail regeneration by repositioning of Hedgehog expressing cells.

    Henry Roehl, Montserrat Garcia Romero, Gareth McCathie, et al.



    Selected by Alberto Rosello-Diez

    Arterio-Venous Remodeling in the Zebrafish Trunk Is Controlled by Genetic Programming and Flow-Mediated Fine-Tuning

    Ilse Geudens, Baptiste Coxam, Silvanus Alt, et al.



    Selected by Andreas van Impel

    Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing

    Qingyun Li, Zuolin Cheng, Lu Zhou, et al.



    Selected by Zheng-Shan Chong

    Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development

    Nicole Traeber, Klemens Uhlmann, Salvatore Girardo, et al.



    Selected by Jacky G. Goetz

    millepattes micropeptides are an ancient developmental switch required for embryonic patterning

    Suparna Ray, Miriam I Rosenberg, Hélène Chanut-Delalande, et al.



    Selected by Erik Clark

    Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

    Kerstin Klinkert, Nicolas Levernier, Peter Gross, et al.

    AND

    Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

    Sachin Kotak, Sukriti Kapoor



    Selected by Giuliana Clemente

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.



    Selected by Coert Margadant

    SOL1 and SOL2 Regulate Fate Transition and Cell Divisions in the Arabidopsis Stomatal Lineage

    Abigail R Simmons, Kelli A Davies, Wanpeng Wang, et al.



    Selected by Martin Balcerowicz

    Analysis of the role of Nidogen/entactin in basement membrane assembly and morphogenesis in Drosophila

    Jianli Dai, Beatriz Estrada, Sofie Jacobs, et al.



    Selected by Nargess Khalilgharibi

    Also in the genetics category:

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Arterio-Venous Remodeling in the Zebrafish Trunk Is Controlled by Genetic Programming and Flow-Mediated Fine-Tuning

    Ilse Geudens, Baptiste Coxam, Silvanus Alt, et al.



    Selected by Andreas van Impel

    CRISPR/Cas9-mediated gene deletion of the ompA gene in an Enterobacter gut symbiont impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes

    Shivanand Hegde, Pornjarim Nilyanimit, Elena Kozlova, et al.



    Selected by Snehal Kadam

    millepattes micropeptides are an ancient developmental switch required for embryonic patterning

    Suparna Ray, Miriam I Rosenberg, Hélène Chanut-Delalande, et al.



    Selected by Erik Clark

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    The cis-regulatory logic underlying abdominal Hox-mediated repression versus activation of regulatory elements in Drosophila



    Selected by Clarice Hong

    1

    Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages is necessary for functional spinal cord regeneration in zebrafish

    Themistoklis M. Tsarouchas, Daniel Wehner, Leonardo Cavone, et al.



    Selected by Shikha Nayar

    1

    JNK-mediated spindle reorientation in stem cells promotes dysplasia in the aging intestine

    Daniel Hu, Heinrich Jasper



    Selected by Maiko Kitaoka

    Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions

    Summer B. Thyme, Lindsey M. Pieper, Eric H. Li, et al.



    Selected by Daniel Grimes

    Super-Mendelian inheritance mediated by CRISPR/Cas9 in the female mouse germline

    Hannah A. Grunwald, Valentino M. Gantz, Gunnar Poplawski, et al.



    Selected by Rebekah Tillotson

    1

    The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization

    Sarah Herberg, Krista R Gert, Alexander Schleiffer, et al.



    Selected by James Gagnon

    Functional testing of a human PBX3 variant in zebrafish reveals a potential modifier role in congenital heart defects

    Gist H. Farr III, Kimia Imani, Darren Pouv, et al.



    Selected by Hannah Brunsdon

    A robust method for transfection in choanoflagellates illuminates their cell biology and the ancestry of animal septins

    David Booth, Heather Middleton, Nicole King



    Selected by Maya Emmons-Bell

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Jesse R Raab, Keriayn N Smith, Camarie C Spear, et al.



    Selected by Carmen Adriaens

    1

    Genetic compensation is triggered by mutant mRNA degradation

    Mohamed El-Brolosy, Andrea Rossi, Zacharias Kontarakis, et al.



    Selected by Andreas van Impel

    1

    Also in the immunology category:

    Precise tuning of gene expression output levels in mammalian cells

    Yale S. Michaels, Mike B Barnkob, Hector Barbosa, et al.



    Selected by Tim Fessenden

    1

    Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages is necessary for functional spinal cord regeneration in zebrafish

    Themistoklis M. Tsarouchas, Daniel Wehner, Leonardo Cavone, et al.



    Selected by Shikha Nayar

    1

    A new calcium-activated dynein adaptor protein, CRACR2a, regulates clathrin-independent endocytic traffic in T cells

    Yuxiao Wang, Walter Huynh, Taylor Skokan, et al.



    Selected by Nicola Stevenson

    Human macrophages survive and adopt activated genotypes in living zebrafish

    Colin D. Paul, Alexus Devine, Kevin Bishop, et al.



    Selected by Giuliana Clemente

    1

    Single-cell Map of Diverse Immune Phenotypes Driven by the Tumor Microenvironment

    Elham Azizi, Ambrose J. Carr, George Plitas, et al.



    Selected by Tim Fessenden

    Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity

    Adair L Borges, Jenny Y Zhang, MaryClare Rollins, et al.

    AND

    Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity

    Mariann Landsberger, Sylvain Gandon, Sean Meaden, et al.



    Selected by Fillip Port

    Galleria mellonella as an Insect Model for P. destructans, the Cause of White-Nose Syndrome in Bats

    Chapman N Beekman, Lauren Meckler, Eleanor Kim, et al.



    Selected by Heath MacMillan

    Size-dependent segregation controls macrophage phagocytosis of antibody-opsonized targets

    Matthew H Bakalar, Aaron M Joffe, Eva Schmid, et al.



    Selected by Tim Fessenden
    Close