Menu

Close

Microfluidic protein isolation and sample preparation for high resolution cryo-EM

Claudio Schmidli, Stefan Albiez, Luca Rima, Ricardo Righetto, Inayatulla Mohammed, Paola Oliva, Lubomir Kovacik, Henning Stahlberg, Thomas Braun

Preprint posted on February 21, 2019 https://www.biorxiv.org/content/10.1101/556068v1

Purification and cryoEM structure determination of an untagged protein complex from a single microliter of cell lysate

Selected by David Wright

Background

Cryogenic electron microscopy (cryoEM), with recent improvements in hardware and software, has become a very powerful technique for the high resolution structure determination of proteins (1). There are many advantages of CryoEM over crystallography; however one of the most important is that typically CryoEM structures can be determined from a few micrograms of purified material, rather than the milligram quantities usually needed for crystallography. In this preprint the authors take this one step further and, using an ingenious combination of techniques, are able to solve the structure of an untagged protein from as little as one microliter of cell lysate.

Results

Figure 1 very clearly shows a basic protocol for this work, which I will briefly describe. Commercial antibodies specific to the α4 subunit of the 20S proteasome were treated with a kit to produce Fab fragments: these are minimal regions of antibodies containing only a single antigen binding site, rather than the two found on a complete antibody. Fab fragments were used rather than intact antibodies to prevent any potential cross-linking and aggregation. These Fabs were then biotinylated via a photocleavable linker and bound to paramagnetic streptavidin beads: the beads were then incubated with the lysate from 1 microliter of commercial HeLa cells. The proteasome complexes in the lysate bound to the Fabs, which were in turn bound to the streptavidin beads, immobilised in the magnetic trap and washed to remove all other protein and non-protein contaminants. Elution of the highly pure complexes was achieved by irradiation at a specific UV wavelength to detach the Fab fragments from their biotin tags. This high concentration sample was then applied to EM grids using the Cryowriter technique and frozen without blotting (2).

Figure 1. Schematic work-flow for microfluidic protein isolation and cryo-EM grid preparation – (i) The lysate is incubated with resin-immobilised Fabs (ii) A magnetic field is applied to separate the Fab-bound protease particles (iii) A UV pulse breaks link between biotin and Fab (iv) Fab-bound protease particles are released (v) The eluted samples are applied to EM grids

The structure obtained from the data (figure 3) has an estimated resolution of 3.5 Å, which is similar to the previous cryoEM structure (3), suggesting that the technique does not affect the resolution significantly. The authors report that the structure largely agrees with previous crystallographic data. Interestingly, subunits β4-6 are less well resolved in the EM map, which the authors attribute to their flexibility. Additionally, the Fab fragments can be seen weakly in the density, which may have been useful for assigning the orientation of these pseudo-symmetric particles in the reconstruction.

Figure 3. 3D reconstruction of the human 20S proteasome Final EM map of the 20S proteasome coloured by subunit, showing the C2 symmetry axis and Fab fragments in grey only.

As an another control, the authors add Tobacco Mosaic Virus at a known concentration in the wash buffer, which resulted in a 1.9 Å structure from the same micrographs as used for the proteasome. This again suggests that the set up does not prevent the generation of high resolution structural data.

This article may have a large impact on the structural biology field. It shows that it is possible to solve structures of protein complexes expressed at native levels from very small volumes of cells. This work could pave the way for the examination and quantification of native protein complexes.

Comments and questions

  1. Since this is a native sample, it might be expected that, in addition to the 20S proteasome, there would be other super-complexes such as the 26S proteasome. Did the authors see any evidence of this subpopulation?
  2. How long was the data collection? Was there any obvious preferential orientation of the proteasomes?
  3. How well does the proteasome express? Would this work for less well expressed proteins?
  4. Might this setup be useable with other expression tags, which could be used in combination with overexpression to promote the formation of certain complexes?

Why I chose this article

The main reason I chose the article is because of how novel the technology is. As I have previously worked on crystallography, I think it’s amazing that structures can be solved from such small volumes of cells. I’m really looking forward to seeing this technology being used to probe the structure and stoichiometry of native protein complexes.

References

  1. Kühlbrandt W. The Resolution Revolution. Science. 2014;343(6178):1443.
  2. Arnold SA, Albiez S, Opara N, Chami M, Schmidli C, Bieri A, et al. Total Sample Conditioning and Preparation of Nanoliter Volumes for Electron Microscopy. ACS Nano. 2016 2016/05/24;10(5):4981-8.
  3. da Fonseca PCA, Morris EP. Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core. Nature Communications. 2015 07/02/online;6:7573.

 

Posted on: 6th March 2019

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the biochemistry category:

    The autophagic membrane tether ATG2A transfers lipids between membranes

    Shintaro Maeda, Chinatsu Otomo, Takanori Otomo



    Selected by Sandra Malmgren Hill

    LTK is an ER-resident receptor tyrosine kinase that regulates secretion

    Federica G. Centonze, Veronika Reiterer, Karsten Nalbach, et al.



    Selected by Nicola Stevenson

    1

    Plant photoreceptors and their signaling components compete for binding to the ubiquitin ligase COP1 using their VP-peptide motifs

    Kelvin Lau, Roman Podolec, Richard Chappuis, et al.



    Selected by Martin Balcerowicz

    HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly

    C. Favard, J. Chojnacki, P. Merida, et al.



    Selected by Amberley Stephens

    Aqueous synthesis of a small-molecule lanthanide chelator amenable to copper-free click chemistry

    Stephanie Cara Bishop, Robert Winefield, Asokan Anbanandam, et al.



    Selected by Zhang-He Goh

    Hepatocyte-specific deletion of Pparα promotes NASH in the context of obesity

    Marion Regnier, Arnaud Polizzi, Sarra Smati, et al.



    Selected by Pablo Ranea Robles

    ENDOSOMAL MEMBRANE TENSION CONTROLS ESCRT-III-DEPENDENT INTRA-LUMENAL VESICLE FORMATION

    Vincent Mercier, Jorge Larios, Guillaume Molinard, et al.



    Selected by Nicola Stevenson

    1

    Dynamic Aha1 Co-Chaperone Binding to Human Hsp90

    Javier Oroz, Laura J Blair, Markus Zweckstetter



    Selected by Reid Alderson

    1

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    1

    Structures of the Otopetrin Proton Channels Otop1 and Otop3

    Kei Saotome, Bochuan Teng, Che Chun (Alex) Tsui, et al.



    Selected by David Wright

    Inactive USP14 and inactive UCHL5 cause accumulation of distinct ubiquitinated proteins in mammalian cells

    Jayashree Chadchankar, Victoria Korboukh, Peter Doig, et al.



    Selected by Mila Basic

    S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate desmosome assembly and cell adhesion.

    Keith T Woodley, Mark O Collins



    Selected by Abagael Lasseigne

    3

    A complex containing lysine-acetylated actin inhibits the formin INF2

    Mu A, Tak Shun Fung, Arminja N. Kettenbach, et al.



    Selected by Laura McCormick

    1

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Also in the biophysics category:

    The autophagic membrane tether ATG2A transfers lipids between membranes

    Shintaro Maeda, Chinatsu Otomo, Takanori Otomo



    Selected by Sandra Malmgren Hill

    Effective concentrations enforced by intrinsically disordered linkers are governed by polymer physics

    Charlotte S. Sørensen, Magnus Kjaergaard



    Selected by Tessa Sinnige

    1

    Spreading of molecular mechanical perturbations on linear filaments

    Zsombor Balassy, Anne-Marie Lauzon, Lennart Hilbert



    Selected by Lars Hubatsch

    Blue light induces neuronal-activity-regulated gene expression in the absence of optogenetic proteins

    Kelsey M. Tyssowski, Jesse M. Gray



    Selected by Zheng-Shan Chong

    HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly

    C. Favard, J. Chojnacki, P. Merida, et al.



    Selected by Amberley Stephens

    Microfluidic protein isolation and sample preparation for high resolution cryo-EM

    Claudio Schmidli, Stefan Albiez, Luca Rima, et al.



    Selected by David Wright

    ENDOSOMAL MEMBRANE TENSION CONTROLS ESCRT-III-DEPENDENT INTRA-LUMENAL VESICLE FORMATION

    Vincent Mercier, Jorge Larios, Guillaume Molinard, et al.



    Selected by Nicola Stevenson

    1

    Planar differential growth rates determine the position of folds in complex epithelia

    Melda Tozluoğlu, Maria Duda, Natalie J Kirkland, et al.

    AND

    Buckling of epithelium growing under spherical confinement

    Anastasiya Trushko, Ilaria Di Meglio, Aziza Merzouki, et al.



    Selected by Sundar Naganathan

    2

    Microtubules stabilize intercellular contractile force transmission during tissue folding



    Selected by Ivana Viktorinová

    Dynamic Aha1 Co-Chaperone Binding to Human Hsp90

    Javier Oroz, Laura J Blair, Markus Zweckstetter



    Selected by Reid Alderson

    1

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    1

    Central spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B

    Che-Hang Yu, Stefanie Redemann, Hai-Yin Wu, et al.



    Selected by Federico Pelisch

    1

    Mechanical Stretch Kills Transformed Cancer Cells

    Ajay Tijore, Mingxi Yao, Yu-Hsiu Wang, et al.



    Selected by Joseph Jose Thottacherry

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

    Simao Coelho, Jongho Baek, Matthew S Graus, et al.



    Selected by Lars Hubatsch

    Also in the molecular biology category:

    The autophagic membrane tether ATG2A transfers lipids between membranes

    Shintaro Maeda, Chinatsu Otomo, Takanori Otomo



    Selected by Sandra Malmgren Hill

    LTK is an ER-resident receptor tyrosine kinase that regulates secretion

    Federica G. Centonze, Veronika Reiterer, Karsten Nalbach, et al.



    Selected by Nicola Stevenson

    1

    Accurate detection of m6A RNA modifications in native RNA sequences

    Huanle Liu, Oguzhan Begik, Morghan C Lucas, et al.



    Selected by Christian Bates

    1

    Blue light induces neuronal-activity-regulated gene expression in the absence of optogenetic proteins

    Kelsey M. Tyssowski, Jesse M. Gray



    Selected by Zheng-Shan Chong

    Slide-seq: A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolution

    Samuel G Rodriques, Robert R Stickels, Aleksandrina Goeva, et al.

    AND

    High-density spatial transcriptomics arrays for in situ tissue profiling

    Sanja Vickovic, Goekcen Eraslan, Johanna Klughammer, et al.



    Selected by Carmen Adriaens

    Optical determination of absolute membrane potential

    Julia R. Lazzari-Dean, Anneliese M.M. Gest, Evan Miller



    Selected by James Marchant

    MicroRNA-mediated control of developmental lymphangiogenesis

    Hyun Min Jung, Ciara Hu, Alexandra M Fister, et al.



    Selected by Rudra Nayan Das

    Microfluidic protein isolation and sample preparation for high resolution cryo-EM

    Claudio Schmidli, Stefan Albiez, Luca Rima, et al.



    Selected by David Wright

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    1

    Structures of the Otopetrin Proton Channels Otop1 and Otop3

    Kei Saotome, Bochuan Teng, Che Chun (Alex) Tsui, et al.



    Selected by David Wright

    Central spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B

    Che-Hang Yu, Stefanie Redemann, Hai-Yin Wu, et al.



    Selected by Federico Pelisch

    1

    Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division

    Evgeny Zatulovskiy, Daniel F. Berenson, Benjamin R. Topacio, et al.



    Selected by Zaki Ahmad

    1

    Distinct ROPGEFs successively drive polarization and outgrowth of root hairs

    Philipp Denninger, Anna Reichelt, Vanessa Aphaia Fiona Schmidt, et al.



    Selected by Marc Somssich

    Inactive USP14 and inactive UCHL5 cause accumulation of distinct ubiquitinated proteins in mammalian cells

    Jayashree Chadchankar, Victoria Korboukh, Peter Doig, et al.



    Selected by Mila Basic

    Bacteriophage resistance alters antibiotic mediated intestinal expansion of enterococci

    Anushila Chatterjee, Cydney N Johnson, Phat Luong, et al.



    Selected by Yasmin Lau

    On-site ribosome remodeling by locally synthesized ribosomal proteins in axons

    Toshiaki Shigeoka, Max Koppers, Hovy Ho-Wai Wong, et al.



    Selected by Srivats Venkataramanan
    Close