Menu

Close

Revealing the nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy

Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, Ljiljana Milenkovic, Tim Stearns, W. E. Moerner

Preprint posted on October 08, 2018 https://www.biorxiv.org/content/early/2018/10/08/437640

Lighting up the cell’s antenna: beyond the diffraction limit, the primary cilium doesn’t look quite like a cylinder

Selected by Gautam Dey

Context

The mammalian primary cilium, non-motile cousin to motile cilia and flagella1, is a 200-300 nm thick antenna-like structure that projects approximately 5 microns from the cell surface. The primary cilium serves as a sensory organelle and signaling hub2,3, feeding into several critical signaling pathways and cell cycle progression mechanisms. A range of human diseases (“ciliopathies”) are caused by ciliary dysfunction, in turn often linked to defects in intraflagellar transport (IFT)4. Since transport is required to construct the cilium in the first place, IFT loss-of-function could either affect signaling directly or indirectly through the ensuing structural defects- highlighting the need for a way to quantitatively investigate ciliary structure in 3D.

 

Major findings 

The authors apply 3D STORM (later 2-color STED), to the structural interrogation of primary cilia in mouse embryonic fibroblasts (MEFs). In particular, they leverage recent developments in tweaking the point spread function (PSF) produced by single molecule fluorescent emitters- careful engineering of the light path in their in-house ‘4f’system5 produces a double helical PSF that encodes depth information within the angle between the twinned spots representing each emitter.

The transmembrane Hedgehog (Hh) receptor Smoothened (SMO) localizes to the primary cilium upon activation of the pathway.  The authors image primary cilia using a SNAP-tagged SMO that is click-labeled with an Alexa647 dye after Hh activation and fixation, producing single emitter point clouds with a precision of 25 nm or better (Figure 1). These reconstructions reveal a wide heterogeneity in cilia shapes, even in wild type cells, produced by morphological features markedly absent from textbook representations- such as kinking, bulging, and even possible budding (Figure 1).

Figure 1: Reproduced in full from Figure 1 of Yoon et al. 2018 under a Creative Commons CC-BY-NC-ND 4.0 International License. Labeling and 3D SR imaging of the ciliary membrane. (a) SNAP-SMO proteins, where the SNAP protein is on the extracellular side, are covalently labeled with BG-Alexa647 along the ciliary membrane, which are usually found near the coverslip surface. PACT-YFP indicates the base of the cilium and a nearby bright fiducial is used to correct for spatial drift. (b) Overlaid diffraction-limited images of the SNAP-SMO and PACT-YFP in chemically fixed control MEF cells that were treated with SAG. 3D SR microscopy using the double-helix point spread function (DH-PSF) was performed to obtain a localization map of SNAP-SMO molecules along one primary cilium, reconstructed as a (c) 2D histogram and (d) 3D scatterplot. For SNAP-SMO distributions of other primary cilia, there is evidence of (e) kinking, (f) bulging, and budding within the same control MEF cells. Scale bar = 1 μm.

 

The authors go on to develop a quantitative framework for ciliary shape analysis, first converting the point clouds to a 2D mesh and then using the local Gaussian curvature of the ciliary surface as a way to identify morphological features. Applying these analyses to IFT25 mutants (not thought to play a role in ciliogenesis), they nevertheless discover significant structural defects in the cilium that would be invisible to conventional imaging techniques, and go on to show that these defects can be phenocopied by a drug-induced transport block. They argue that the bulging in IFT25 mutants is therefore a likely consequence of aberrant cargo accumulation at the tips, including and not limited to monomeric tubulin (a claim bolstered by 2-color STED imaging of alpha-tubulin and SMO at a resolution of 50-100 nm).

 

What next?

The images in this paper are stunning and have certainly changed the way I view the primary cilium! I imagine the transport-coupled changes in cilium structure could usefully feed back into existing models of IFT transport. The authors also do a great job of outlining the paper’s methods in great technical detail without sacrificing clarity or readability. As the authors do, I believe the entire pipeline holds great promise for imaging subcellular morphology at unprecedented detail (as long as dense and uniform surface labelling with blinking fluorophores is possible).

I’d be curious to know whether the structural defects in the IFT25 mutants or transport-inhibited cells are also visible by EM tomography- the only data I found in the literature were from the testis, where IFT25 is highly abundant and the defects much more pronounced6.

 

References:

  1. Khan, S. & Scholey, J. M. Assembly, Functions and Evolution of Archaella, Flagella and Cilia. Curr. Biol. 28, R278–R292 (2018).
  2. Singla, V. & Reiter, J. F. The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313, 629–33 (2006).
  3. Seeley, E. S. & Nachury, M. V. The perennial organelle: assembly and disassembly of the primary cilium. J. Cell Sci. 123, 511–518 (2010).
  4. Ishikawa, H. & Marshall, W. F. Intraflagellar Transport and Ciliary Dynamics. Cold Spring Harb. Perspect. Biol. 9, a021998 (2017).
  5. Gahlmann, A. et al. Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions. Nano Lett. 13, 987–993 (2013).
  6. Liu, H. et al. IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation†. Biol. Reprod. 96, 993–1006 (2017).

Tags: 3d storm, primary cilium, sted, super-resolution microscopy

Posted on: 19th October 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Actomyosin-II facilitates long-range retrograde transport of large cargoes by controlling axonal radial contractility

    Tong Wang, Wei Li, Sally Martin, et al.



    Selected by Ivana Viktorinová

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Stable knockout and complementation of receptor expression using in vitro cell line derived reticulocytes for dissection of host malaria invasion requirements

    Timothy J Satchwell, Katherine E Wright, Katy L Haydn-Smith, et al.



    Selected by Alyson Smith

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    Activation of intracellular transport by relieving KIF1C autoinhibition

    Nida Siddiqui, Alice Bachmann, Alexander J Zwetsloot, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    1

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Franco Iborra

    1

    Basal extrusion drives cell invasion and mechanical stripping of E-cadherin

    John Fadul, Gloria M Slattum, Nadja M Redd, et al.



    Selected by William Hill

    Ribosomal DNA and the rDNA-binding protein Indra mediate non-random sister chromatid segregation in Drosophila male germline stem cells

    George Watase, Yukiko Yamashita



    Selected by Maiko Kitaoka

    An F-actin shell ruptures the nuclear envelope by sorting pore-dense and pore-free membranes in meiosis of starfish oocytes

    Natalia Wesolowska, Pedro Machado, Celina Geiss, et al.



    Selected by Maiko Kitaoka

    1

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.



    Selected by Lorenzo Lafranchi

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.

    AND

    Live-cell single RNA imaging reveals bursts of translational frameshifting

    Kenneth R Lyon Jr, Luis U Aguilera, Tatsuya Morisaki, et al.



    Selected by Nicola Stevenson

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    2

    Also in the developmental biology category:

    Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissue

    Pauline E Jullien, Stefan Grob, Antonin Marchais, et al.



    Selected by Chandra Shekhar Misra

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Diana Pinheiro

    Unlimited genetic switches for cell-type specific manipulation

    Jorge Garcia-Marques, Ching-Po Yang, Isabel Espinosa-Medina, et al.



    Selected by Rafael Almeida

    1

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Paul Gerald L. Sanchez and Stefano Vianello

    Symmetry breaking in the embryonic skin triggers a directional and sequential front of competence during plumage patterning

    Richard Bailleul, Carole Desmarquet-Trin Dinh, Magdalena Hidalgo, et al.



    Selected by Alexa Sadier

    A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis

    Saiko Yoshida, Alja van der Schuren, Maritza van Dop, et al.



    Selected by Martin Balcerowicz

    1

    Suppressor of Fused controls perinatal expansion and quiescence of future dentate adult neural stem cells

    Hirofumi Noguchi, Jesse Garcia Castillo, Kinichi Nakashima, et al.



    Selected by Ekaterina Dvorianinova

    The embryonic transcriptome of Arabidopsis thaliana

    Falko Hofmann, Michael A Schon, Michael D Nodine



    Selected by Chandra Shekhar Misra

    1

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    A Scube2-Shh feedback loop links morphogen release to morphogen signaling to enable scale invariant patterning of the ventral neural tube

    Zach Collins, Kana Ishimatsu, Tony Tsai, et al.



    Selected by Teresa Rayon

    1

    Close