Menu

Close

A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in the spider Parasteatoda tepidariorum

Christian L. B. Paese, Anna Schoenauer, Daniel J. Leite, Steven Russell, Alistair P. McGregor

Preprint posted on April 10, 2018 https://www.biorxiv.org/content/early/2018/04/10/298448

Spider Sox spins a tail: an evo-devo study from @McGregorLab and @sr120 reveals a conserved role for SoxB1 in segmentation and posterior development.

Selected by Erik Clark

Background

The common house spider (Parasteatoda tepidariorium) is a fascinating model for evo-devo, and for segmentation in particular. Spiders belong to the most basally-branching group of arthropods in relation to insects – and therefore developmental characteristics shared with Drosophila are likely to be conserved across the whole arthropod phylum. In addition, they produce their segmented body using three separate patterning mechanisms: leg-bearing segments are patterned simultaneously by gap genes (like Drosophila), abdominal segments are patterned sequentially from a posterior segment addition zone (like Tribolium), and head segments are patterned in a less well understood manner using travelling and splitting waves of hedgehog expression.

SoxB1 genes (Sox1, 2, and 3 in vertebrates) are important developmental genes, but have not been studied much in arthropods other than Drosophila. One SoxB1 gene, Dichaete, is likely to be necessary for segmentation in insects – is this role conserved in spiders?

 

Key Findings

Paese et al find that while the spider Dichaete ortholog is not involved in embryonic development, a closely related SoxB1 gene, Sox21b-1, is. (Spider Sox genes are catalogued by the same authors in another recent preprint, see Related Research.) Parental RNAi knockdown of Sox21b-1 causes segmentation gene expression to be lost within the region that normally gives rise to the leg-bearing segments, while the segment addition zone fails to develop at all. In some embryos, early embryonic events are perturbed, and the embryo never gets beyond the symmetrical germ disc phase.

Further experiments show that sox21b-1 has a crucial early role in setting up the segment addition zone, being required for the expression of such key players as Wnt, Notch, and Caudal (Cdx). Sox21b-1 also seems to be important for promoting cell proliferation, since cells in the RNAi embryos are larger and divide less often.

 

Sox21b-1 knockdown severely perturbs segmentation (Class I, II). In the most strongly-affected embryos, early development is perturbed as well (Class III).

 

Significance

The primary function of SoxB1, conserved across metazoans, is to promote neurogenesis. This study now indicates that SoxB1 also plays key roles in posterior elongation (likely conserved across bilaterians – compare the neuromesodermal progenitor role of Sox2 in vertebrates), and in segmentation (conserved across arthropods).

However, evolutionary conservation is only one side of the story, as the study also highlights a striking example of evolutionary contingency. Insects and spiders have copies of both Dichaete and Sox21b, but Dichaete plays the segmentation role in insects while Sox21b plays the segmentation role in spiders. It will be interesting to look at the expression and function of SoxB1 genes in other arthropod species, and reconstruct the evolutionary history that has led to this counter-intuitive result.

 

Related Research

Russell SRH et al (1996) The Dichaete gene of Drosophila melanogaster encodes a SOX-domain protein required for embryonic segmentation. Development 122: 3669-3676

Paese CLB, Leite DJ, Schoenauer A, McGregor AP, Russell S (2017) Duplication and divergence of Sox genes in spiders. bioRxiv https://doi.org/10.1101/212647

Clark E and Peel AD (2018) Evidence for the temporal regulation of insect segmentation by a conserved sequence of transcription factors. Development dev.155580

Tags: evo-devo, parasteatoda, patterning, segmentation, sox, soxb, spider

Read preprint (No Ratings Yet)




  • Author's response

    The author team shared

    This work came about as a result of a sabbatical visit to the McGregor lab by Steve in 2017. The emerging evidence that SoxB genes played important roles in segmentation and neurogenesis across the insects raised the question of whether these functions were more widely conserved in arthropods. In addition, the work on the Parasteatoda genome sequence led by Alistair offered an interesting opportunity to look at the fate of the Sox family after a whole genome duplication. It has been a fantastic collaboration and SR is grateful to Alistair and Chris for introducing him to the wonderful world of spiders.

    Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    Human macrophages survive and adopt activated genotypes in living zebrafish

    Colin D. Paul, Alexus Devine, Kevin Bishop, et al.



    Selected by Giuliana Clemente

    Altering the temporal regulation of one transcription factor drives sensory trade-offs

    Ariane Ramaekers, Simon Weinberger, Annelies Claeys, et al.



    Selected by Mariana R.P. Alves

    Presence of midline cilia supersedes the expression of Lefty1 in forming the midline barrier during the establishment of left-right asymmetry

    Natalia A Shylo, Dylan A Ramrattan, Scott D Weatherbee



    Selected by Hannah Brunsdon

    Genetic compensation is triggered by mutant mRNA degradation

    Mohamed El-Brolosy, Andrea Rossi, Zacharias Kontarakis, et al.



    Selected by Andreas van Impel

    1

    Cellular Crowding Influences Extrusion and Proliferation to Facilitate Epithelial Tissue Repair

    Jovany Jeomar Franco, Youmna Maryline Atieh, Chase Dallas Bryan, et al.



    Selected by Helen Weavers

    Photoperiod sensing of the circadian clock is controlled by ELF3 and GI

    Usman Anwer, Amanda Davis, Seth Jon Davis, et al.



    Selected by Annika Weimer

    Limb- and tendon-specific Adamtsl2 deletion identifies a soft tissue mechanism modulating bone length

    Dirk Hubmacher, Stetson Thacker, Sheila M Adams, et al.



    Selected by Alberto Rosello-Diez

    A non-cell autonomous actin redistribution enables isotropic retinal growth

    Marija Matejcic, Guillaume Salbreux, Caren Norden



    Selected by Yara E. Sánchez Corrales

    1

    Rearing temperature and fatty acid supplementation jointly affect membrane fluidity and heat tolerance in Daphnia

    Dominik Martin-Creuzburg, Bret L. Coggins, Dieter Ebert, et al.



    Selected by Alexander Little

    Cell type-specific interchromosomal interactions as a mechanism for transcriptional diversity

    Adan Horta, Kevin Monahan, Lisa Bashkirova, et al.



    Selected by Boyan Bonev

    Germ layer specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm.

    Miguel Salinas-Saavedra, Amber Q. Rock, Mark Q. Martindale



    Selected by ClaireS & SophieM

    1

    Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development

    Andrew J Aman, Alexis N Fulbright, David M Parichy



    Selected by Andreas van Impel

    Tissue flow induces cell shape changes during organogenesis

    Gonca Erdemci-Tandogan, Madeline J.Clark, Jeffrey D. Amack, et al.



    Selected by Jacky G. Goetz

    Temporal Control of Transcription by Zelda in living Drosophila embryos

    Jeremy Dufourt, Antonio Trullo, Jennifer Hunter, et al.



    Selected by Teresa Rayon

    1

    An atlas of silencer elements for the human and mouse genomes

    Naresh Doni Jayavelu, Ajay Jajodia, Arpit Mishra, et al.



    Selected by Rafael Galupa

    1

    Genetically regulated human NODAL splice variants are differentially post-transcriptionally processed and functionally distinct

    Scott D Findlay, Olena Bilyk, Kiefer Lypka, et al.



    Selected by Pierre Osteil

    Also in the evolutionary biology category:

    The genomic basis of colour pattern polymorphism in the harlequin ladybird

    Mathieu Gautier, Junichi Yamaguchi, Julien Foucaud, et al.



    Selected by Fillip Port

    Altering the temporal regulation of one transcription factor drives sensory trade-offs

    Ariane Ramaekers, Simon Weinberger, Annelies Claeys, et al.



    Selected by Mariana R.P. Alves

    A robust method for transfection in choanoflagellates illuminates their cell biology and the ancestry of animal septins

    David Booth, Heather Middleton, Nicole King



    Selected by Maya Emmons-Bell

    A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in the spider Parasteatoda tepidariorum

    Christian L. B. Paese, Anna Schoenauer, Daniel J. Leite, et al.



    Selected by Erik Clark

    1

    Germ layer specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm.

    Miguel Salinas-Saavedra, Amber Q. Rock, Mark Q. Martindale



    Selected by ClaireS & SophieM

    1

    Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development

    Andrew J Aman, Alexis N Fulbright, David M Parichy



    Selected by Andreas van Impel

    Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity

    Adair L Borges, Jenny Y Zhang, MaryClare Rollins, et al.

    AND

    Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity

    Mariann Landsberger, Sylvain Gandon, Sean Meaden, et al.



    Selected by Fillip Port

    Dynamic Kinetochore Size Regulation Promotes Microtubule Capture And Chromosome Biorientation In Mitosis

    Carlos Sacristan, Misbha Ahmad, Jenny Keller, et al.

    AND

    Self-assembly of the RZZ complex into filaments drives kinetochore expansion in the absence of microtubule attachment

    Cláudia Pereira, Rita M Reis, José B Gama, et al.



    Selected by Gautam Dey

    Individual- and population-level drivers of consistent foraging success across environments

    Lysanne Snijders, Ralf HJM Kurvers, Stefan Krause, et al.



    Selected by Rasmus Ern

    The ancestral animal genetic toolkit revealed by diverse choanoflagellate transcriptomes

    Daniel Richter, Parinaz Fozouni, Michael Eisen, et al.



    Selected by Rafael Galupa

    Genome-wide selection scans integrated with association mapping reveal mechanisms of physiological adaptation across a salinity gradient in killifish

    Reid S. Brennan, Timothy M. Healy, Heather J. Bryant, et al.



    Selected by Andy Turko

    From Armament to Ornament: Performance Trade-Offs in the Sexual Weaponry of Neotropical Electric Fishes

    Kory M. Evans, Maxwell J. Bernt, Matthew A. Kolmann, et al.



    Selected by Cassandra Donatelli

    Insect wings and body wall evolved from ancient leg segments

    Heather S Bruce, Nipam H Patel

    AND

    Two sets of wing homologs in the crustacean, Parhyale hawaiensis

    Courtney M Clark-Hachtel, Yoshinori Tomoyasu



    Selected by Erik Clark

    2

    Close

    We want to make our website, and the services we provide, useful and reliable. This sometimes involves placing small amounts of information called cookies on the device you used to access the internet. If you continue to use this website we will assume you are happy to accept our cookies.

    Accept