Menu

Close

Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis

Min Zhu, Hirotaka Tao, Mohammad Samani, Mengxi Luo, Xian Wang, Sevan Hopyan, Yu Sun

Preprint posted on September 08, 2018 https://www.biorxiv.org/content/early/2018/09/08/412072

A new way of measuring the mechanical properties of bulk tissues in vivo identifies a stiffness gradient in the developing limb that correlates with patterns of cell migration.

Selected by Natalie Dye

 

Model for durotaxis in the limb bud: Wnt5a regulates fibronectin expression, which produces a stiffness gradient in the mesoderm that guides mesodermal migration. Ectoderm cells also migrate directionally but without a stiffness gradient. Collective cell migration correlates with tissue shape changes.

 

Background:

As morphogenesis is inherently a mechanical process subject to physical laws, studying it requires methods for probing the mechanics of tissue development. We already know that cells in culture behave differently in different mechanical contexts. For example, stem cell differentiation is affected by substratum stiffness, and migratory cells move toward stiffer surfaces (a behavior called “durotaxis”). Determining how much of this behavior occurs in vivo requires methods for probing the mechanics of natural tissue environments. Existing methods for quantifying tissue stiffness include: (1) atomic force microscopy (AFM) – measuring how difficult it is to indent a tissue with a cantilever. AFM is great for spatially mapping the surface stiffness but can become really difficult to interpret with thicker tissues. (2) Deformation of ferrofluid microdroplets – injecting a magnetic fluid into the embryo and then measuring its deformation by a magnet. This method is relatively slow, however, and only one location can be probed at a time. Thus, it remains difficult to generate a map of tissue stiffness in vivo, particularly in thick, 3D tissue such as the vertebrate limb bud.

 

 Summary of the preprint:

The authors of this preprint developed a new method for spatially mapping tissue stiffness in vivo and used it to gain new insight into how the vertebrate limb bud is shaped during development. Their method involves the simultaneous displacement of several magnetic beads injected into a single embryo. For magnetic displacement, they built a custom device that generates a uniform magnetic field within a workspace that accommodates mouse embryos up to E10.5.

Authors inject multiple magnetic beads into limb buds and then measure tissue mechanical properties by analyzing displacement under magnetic force.

 

They make the following new discoveries:

  • A stiffness gradient exists in the mesoderm but not the ectoderm of the limb bud.
  • 3D cell tracking using time-lapse light sheet microscopy revealed new patterns of movement not previously detected with confocal imaging.
  • The newly detected pattern of cell movement correlates with the stiffness gradient and requires Wnt5a, a known signaling molecule in limb development. The movement is not directed toward Wnt5a, however, but away from it.
  • Optical projection tomography indicates that an overall change in tissue morphology correlates with the Wnt5a-dependent collective cell migration.
  • Fibronectin is expressed in a pattern that matches the stiffness gradient. While Wnt5a is necessary for the fibronectin pattern, the two proteins do not appear in the same place at the same time. The authors propose that this disparity is due to the dynamics of expression: Wnt5a turns on fibronectin, but time is required for its production/secretion, and meanwhile the Wnt5a expression domain is dynamic – becoming increasingly distal as the tissue grows.
Normalized stiffness maps of the wild type (left) and Wnt5a mutant (right) limb buds.

 

Together, their data support the conclusion that in vivo durotaxis (cell migration guided by stiffness) alters limb bud morphology and that Wnt5a may influence limb shape not by acting as a chemoattractant but by modifying tissue stiffness.

 

 My 2-cents:

              I am always on the look-out for new methods for biophysical characterization of tissues. There has been a lot of progress in isolated cells in culture, but working with tissues is much harder. They’re larger, more complex, and just trickier to access. This new method advances our ability to analyze bulk tissues and appears to be adaptable to other contexts, at least for tissues that are amenable to microinjection, studied by those scientists that are tech-savvy enough to build their own magnetic device. The tissues analyzed here were in the range of ~50-200Pa, but the full dynamic range of the technique was not really addressed.

In terms of the biological findings, one obvious interesting direction for future work is the mechanism by which this fibronectin-based stiffness gradient influences collective cell migration. As the authors point out, the gradient in stiffness observed here (~0.5Pa/um) is just below the range that has been deemed detectable by cells in culture (1-400Pa/um). So maybe it has to do with the fact that we’re looking here at a collective behavior, or the combination of multiple signaling mechanisms. I’ll be interested to read more about the mechanism in the future.

One thing I don’t understand is that there appears to be directional migration of both the ectoderm and the mesoderm, but the stiffness gradient is only in the mesoderm. Is the ectoderm somehow following the mesoderm? Or is the mechanism of migration different in the two different layers? Are they mechanically coupled?

In sum, I would recommend reading this nicely-written and interesting preprint to all those interested in cell motility, morphogenesis, and tissue development!

 

For more information…

Deformation of ferrofluid microdroplets:

Serwane, F. et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods: https://www.nature.com/articles/nmeth.4101

Previous analysis of cell motility in the mouse limb bud with confocal:

Wyngaarden, L. A. et al. Oriented cell motility and division underlie early limb bud morphogenesis. Development: http://jcs.biologists.org/content/123/15/e1.2

Tags: cell motility, durotaxis, limb bud, morphogenesis, tissue mechanics

Posted on: 15th October 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the biophysics category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

    Simao Coelho, Jongho Baek, Matthew S Graus, et al.



    Selected by Lars Hubatsch

    Phase transition and amyloid formation by a viral protein as an additional molecular mechanism of virus-induced cell toxicity

    Edoardo Salladini, Claire Debarnot, Vincent Delauzun, et al.



    Selected by Tessa Sinnige

    Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

    Simao Coelho, Jongho baek, Matthew S Graus, et al.



    Selected by Sam Barnett

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy

    Carlo Bevilacqua, Héctor Sánchez Iranzo, Dmitry Richter, et al.



    Selected by Stephan Daetwyler

    1

    Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex

    Diego Gauto, Leandro Estrozi, Charles Schwieters, et al.



    Selected by Reid Alderson

    1

    Structure of a cytochrome-based bacterial nanowire

    David J Filman, Stephen F Marino, Joy E Ward, et al.



    Selected by Amberley Stephens

    Strong preference for autaptic self-connectivity of neocortical PV interneurons entrains them to γ-oscillations

    Charlotte Deleuze, Gary S Bhumbra, Antonio Pazienti, et al.



    Selected by Mahesh Karnani

    Retrieving High-Resolution Information from Disordered 2D Crystals by Single Particle Cryo-EM

    Ricardo Righetto, Nikhil Biyani, Julia Kowal, et al.



    Selected by David Wright

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    2

    The structural basis for release factor activation during translation termination revealed by time-resolved cryogenic electron microscopy

    Ziao Fu, Gabriele Indrisiunaite, Sandip Kaledhonkar, et al.



    Selected by David Wright

    DNA microscopy: Optics-free spatio-genetic imaging by a stand-alone chemical reaction

    Joshua A. Weinstein, Aviv Regev, Feng Zhang



    Selected by Theo Sanderson

    2

    Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma.

    Andrea Palamidessi, Chiara Malinverno, Emanuela FRITTOLI, et al.



    Selected by Tim Fessenden

    1

    Actomyosin-driven tension at compartmental boundaries orients cell division independently of cell geometry in vivo

    Elena Scarpa, Cedric Finet, Guy Blanchard, et al.



    Selected by Ivana Viktorinová

    Also in the cell biology category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Actomyosin-II facilitates long-range retrograde transport of large cargoes by controlling axonal radial contractility

    Tong Wang, Wei Li, Sally Martin, et al.



    Selected by Ivana Viktorinová

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Stable knockout and complementation of receptor expression using in vitro cell line derived reticulocytes for dissection of host malaria invasion requirements

    Timothy J Satchwell, Katherine E Wright, Katy L Haydn-Smith, et al.



    Selected by Alyson Smith

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    Activation of intracellular transport by relieving KIF1C autoinhibition

    Nida Siddiqui, Alice Bachmann, Alexander J Zwetsloot, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    1

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Franco Iborra

    1

    Basal extrusion drives cell invasion and mechanical stripping of E-cadherin

    John Fadul, Gloria M Slattum, Nadja M Redd, et al.



    Selected by William Hill

    Ribosomal DNA and the rDNA-binding protein Indra mediate non-random sister chromatid segregation in Drosophila male germline stem cells

    George Watase, Yukiko Yamashita



    Selected by Maiko Kitaoka

    An F-actin shell ruptures the nuclear envelope by sorting pore-dense and pore-free membranes in meiosis of starfish oocytes

    Natalia Wesolowska, Pedro Machado, Celina Geiss, et al.



    Selected by Maiko Kitaoka

    1

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.



    Selected by Lorenzo Lafranchi

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.

    AND

    Live-cell single RNA imaging reveals bursts of translational frameshifting

    Kenneth R Lyon Jr, Luis U Aguilera, Tatsuya Morisaki, et al.



    Selected by Nicola Stevenson

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    2

    Also in the developmental biology category:

    Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissue

    Pauline E Jullien, Stefan Grob, Antonin Marchais, et al.



    Selected by Chandra Shekhar Misra

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Diana Pinheiro

    Unlimited genetic switches for cell-type specific manipulation

    Jorge Garcia-Marques, Ching-Po Yang, Isabel Espinosa-Medina, et al.



    Selected by Rafael Almeida

    1

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Paul Gerald L. Sanchez and Stefano Vianello

    Symmetry breaking in the embryonic skin triggers a directional and sequential front of competence during plumage patterning

    Richard Bailleul, Carole Desmarquet-Trin Dinh, Magdalena Hidalgo, et al.



    Selected by Alexa Sadier

    A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis

    Saiko Yoshida, Alja van der Schuren, Maritza van Dop, et al.



    Selected by Martin Balcerowicz

    1

    Suppressor of Fused controls perinatal expansion and quiescence of future dentate adult neural stem cells

    Hirofumi Noguchi, Jesse Garcia Castillo, Kinichi Nakashima, et al.



    Selected by Ekaterina Dvorianinova

    The embryonic transcriptome of Arabidopsis thaliana

    Falko Hofmann, Michael A Schon, Michael D Nodine



    Selected by Chandra Shekhar Misra

    1

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    A Scube2-Shh feedback loop links morphogen release to morphogen signaling to enable scale invariant patterning of the ventral neural tube

    Zach Collins, Kana Ishimatsu, Tony Tsai, et al.



    Selected by Teresa Rayon

    1

    Close