Controlled iris radiance in a diurnal fish looking at prey
Posted on: 30 January 2018 , updated on: 20 February 2018
Preprint posted on 19 February 2018
Article now published in Royal Society Open Science at http://dx.doi.org/10.1098/rsos.170838
Threefin blennies can adjust “ocular sparks” in their irises between blue reflections and red fluorescence to suit their background, and do so in the presence of prey, potentially indicating a role in “photolocation” of transparent plankton.
Selected by James FosterCategories: animal behavior and cognition
The Story
Echolocation and electrolocation represent well known examples of so-called “active” senses in animals, which allow them to scan their environments. The authors present evidence that suggests some fishes may adjust the way that light is redirected from their irises, and propose this may be used to “photolocate” their prey, transforming vision from a passive to an active sense. The authors also assess alternative functions of ocular sparks as bright lures for prey or as intraspecific signals.
The Study
Vision, for the most part, is a passive sense, relying on sunlight reflected from objects towards the viewer. It has been suggested that iris reflections in some fishes, known as “ocular sparks”, could be used as a kind of torch, illuminating prey in the fish’s vicinity by reflecting and otherwise re- emitting downwelling sunlight onto them. This study investigated the degree to which threefin blennies can adjust their ocular sparks, which can be either red or blue, in response to both the colour of their background and the availability of prey. The reflectance and radiance of the two types of ocular spark was also measured with reference to ambient illumination. The authors propose that, since the fish produced ocular sparks that contrasted with their background and did so more often when prey were present, these iris reflections may act as a form of “photolocation”, helping them to identify reflected eyeshine from their relatively transparent planktonic prey.
Questions
Before visual detection via photolocation, what aspect of the presence of prey causes the fish to adjust their ocular sparks. Could this be mediated by partial detection with ambient light, or perhaps olfactory cues?
Video shows T. delaisi ocular sparks in the lab. Reproduced from the preprint with permission from the authors.
Might a calibrated camera system be used in future to automate the detection and differentiation of ocular sparks (avoiding the adaptive mechanisms in GoPros and other cameras)?
Could ocular sparks have a secondary role in camouflaging the eye by counterbalancing the dim spot produced by the adjacent dark pupil and breaking up its outline (hiding it from prey with poor visual resolution)?
(Have I been using the wrong plural for “iris” all this time?)
Sign up to customise the site to your preferences and to receive alerts
Register hereAlso in the animal behavior and cognition category:
A depth map of visual space in the primary visual cortex
Wing Gee Shum, Phoebe Reynolds
Neural Basis of Number Sense in Larval Zebrafish
Muhammed Sinan Malik
Pharyngeal neuronal mechanisms governing sour taste perception in Drosophila melanogaster
Matthew Davies
preListsanimal behavior and cognition category:
in the9th International Symposium on the Biology of Vertebrate Sex Determination
This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.
List by | Martin Estermann |
Bats
A list of preprints dealing with the ecology, evolution and behavior of bats
List by | Baheerathan Murugavel |
FENS 2020
A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020
List by | Ana Dorrego-Rivas |