Controlled iris radiance in a diurnal fish looking at prey

Nico K. Michiels, Victoria C. Seeburger, Nadine Kalb, Melissa G. Meadows, Nils Anthes, Amalia A. Mailli, Colin B. Jack

Preprint posted on February 19, 2018

Threefin blennies can adjust “ocular sparks” in their irises between blue reflections and red fluorescence to suit their background, and do so in the presence of prey, potentially indicating a role in “photolocation” of transparent plankton.

Selected by James Foster

The Story

Echolocation and electrolocation represent well known examples of so-called “active” senses in animals, which allow them to scan their environments. The authors present evidence that suggests some fishes may adjust the way that light is redirected from their irises, and propose this may be used to “photolocate” their prey, transforming vision from a passive to an active sense. The authors also assess alternative functions of ocular sparks as bright lures for prey or as intraspecific signals.

The Study

Vision, for the most part, is a passive sense, relying on sunlight reflected from objects towards the viewer. It has been suggested that iris reflections in some fishes, known as “ocular sparks”, could be used as a kind of torch, illuminating prey in the fish’s vicinity by reflecting and otherwise re- emitting downwelling sunlight onto them. This study investigated the degree to which threefin blennies can adjust their ocular sparks, which can be either red or blue, in response to both the colour of their background and the availability of prey. The reflectance and radiance of the two types of ocular spark was also measured with reference to ambient illumination. The authors propose that, since the fish produced ocular sparks that contrasted with their background and did so more often when prey were present, these iris reflections may act as a form of “photolocation”, helping them to identify reflected eyeshine from their relatively transparent planktonic prey.


Before visual detection via photolocation, what aspect of the presence of prey causes the fish to adjust their ocular sparks. Could this be mediated by partial detection with ambient light, or perhaps olfactory cues?

Video shows T. delaisi ocular sparks in the lab. Reproduced from the preprint with permission from the authors.


Might a calibrated camera system be used in future to automate the detection and differentiation of ocular sparks (avoiding the adaptive mechanisms in GoPros and other cameras)?

Could ocular sparks have a secondary role in camouflaging the eye by counterbalancing the dim spot produced by the adjacent dark pupil and breaking up its outline (hiding it from prey with poor visual resolution)?

(Have I been using the wrong plural for “iris” all this time?)


Posted on: 30th January 2018 , updated on: 20th February 2018

Read preprint (No Ratings Yet)

  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the animal behavior and cognition category:

    Establishment of the mayfly Cloeon dipterum as a new model system to investigate insect evolution

    Isabel Almudi, Carlos Martin-Blanco, Isabel Maria Garcia-Fernandez, et al.

    Selected by Ivan Candido-Ferreira


    Regulation of modulatory cell activity across olfactory structures in Drosophila melanogaster

    Xiaonan Zhang, Kaylynn Coates, Andrew Dacks, et al.

    Selected by Rudra Nayan Das


    Elaborate pupils in skates may help camouflage the eye

    Sean Youn, Corey Okinaka, Lydia Mathger

    Selected by Carola Yovanovich

    Distributed correlates of visually-guided behavior across the mouse brain

    Nicholas Steinmetz, Peter Zatka-Haas, Matteo Carandini, et al.

    Selected by Craig Bertram

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.

    Selected by Joanna Cross

    Predation risk and resource abundance mediate foraging behaviour and intraspecific resource partitioning among consumers in dominance hierarchies

    Sean Naman, Rui Ueda, Takuya Sato

    Selected by Rasmus Ern

    Antlions are sensitive to subnanometer amplitude vibrations carried by sand substrates

    Vanessa Martinez, Elise Nowbahari, David Sillam-Dussès, et al.

    Selected by James Foster

    Optogenetic manipulation of medullary neurons in the locust optic lobe

    Hongxia Wang, Richard B. Dewell, Markus U. Ehrengruber, et al.

    Selected by Ana Patricia Ramos

    Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions

    Summer B. Thyme, Lindsey M. Pieper, Eric H. Li, et al.

    Selected by Daniel Grimes

    Using a robotic fish to investigate individual differences in social responsiveness in the guppy

    David Bierbach, Tim Landgraf, Pawel Romanczuk, et al.

    Selected by Rasmus Ern

    Molecular dynamics simulations disclose early stages of the photo-activation of cryptochrome 4

    Daniel R. Kattnig, Claus Nielsen, Ilia A. Solov'yov

    Selected by Miriam Liedvogel


    Small differences in learning speed for different food qualities can drive efficient collective foraging in ant colonies

    Felix B Oberhauser, Alexandra Koch, Tomer J Czaczkes

    Selected by James Foster

    Individual- and population-level drivers of consistent foraging success across environments

    Lysanne Snijders, Ralf HJM Kurvers, Stefan Krause, et al.

    Selected by Rasmus Ern

    From Armament to Ornament: Performance Trade-Offs in the Sexual Weaponry of Neotropical Electric Fishes

    Kory M. Evans, Maxwell J. Bernt, Matthew A. Kolmann, et al.

    Selected by Cassandra Donatelli