Preprint peer review enhances undergraduate biology students’ disciplinary literacy and sense of belonging in STEM
Posted on: 14 December 2022
Preprint posted on 7 October 2022
Article now published in Journal of Microbiology & Biology Education at http://dx.doi.org/10.1128/jmbe.00053-23
Setting (and teaching) the right example at the right time: peer review classes at undergraduate level lead to increased scientific literacy and a heightened sense of belonging to the biological community.
Selected by Reinier Prosee, Kanika Khanna, Giuliana Clemente, Jonny CoatesCategories: scientific communication and education
Background:
In most science curriculums, much time and effort is spent on teaching students the practical nature of experimental research. Though this provides important insights into the life of a scientist, it does not address a key aspect of the scientific process: how to communicate new findings through science publishing and peer review. Teaching students, already at the undergraduate level, about peer review and science publishing could help in providing a fuller, and more realistic picture of what it is to be a scientist.
With this in mind, the researchers behind this preprint devised two different undergraduate modules on peer review, taught by the same instructor, at the gender-diverse, women’s college Mount Holyoke College in South Hadley, Massachusetts, USA. One module was a 14-week seminar course, whereas the other was much smaller and embedded within a disciplinary biology course (vaccinology). Both quantitative and qualitative approaches were included to measure their success. The quantitative method included three tools that can be used to assess the quality of peer review objectively. The qualitative method, instead, focused on several variables – knowledge, practice, the value of practice, professional identity, and personal identity – that were assessed by the use and evaluation of weekly reflection journals.
Key Findings:
Peer review classes led to a measurable increase in peer review ability
Students in both the stand-alone as well as the embedded peer review module were tested for their peer review ability after a few different events. For the stand-alone course, the first two of these were individual review exercises, followed by a group exercise and another individual task. The embedded module only lacked the last individual exercise. Regardless of the measuring tool used, both the students in the stand-alone and embedded course showed significant increases in their peer review ability toward the end of the course. Interestingly, the stand-alone course students showed a step-wise increase, whereas for those in the embedded course the biggest increase was seen after the group exercise. Of note, all students scored between 80-97% of the total maximum score (regardless of the tool used) on a measure that was designed for expert reviewers, not students.
Peer review classes led to an improved perception of the student’s own scientific literacy
Not only could the researchers behind this preprint show that the undergraduate students improved their peer review ability, but – importantly – they also found that the students noticed this themselves. By examining the weekly reflection journals, it was clear that the students from both modules grew in confidence with regard to the peer review process. Especially reading, critiquing, and discussing reviews from peers led to a heightened sense of scientific literacy. This was evident when students opted to publish their reviews on public forums, suggesting their confidence in them.
Increased science literacy helps students to gain a sense of belonging in both the academic and professional space
At the beginning of this study, some of the students reported that although they felt comfortable within the confines of the classroom, this was much less the case in a wider, professional space. Through interactions and discussions with classmates, all enrolled students felt a stronger sense of belonging to the academic community towards the end of the peer review courses. The students were also encouraged to present their reviews to the authors and interact with them. This not only led to an increased sense of belonging within the academic space but also the wider professional space.
Why we picked this preprint
One thing we haven’t mentioned yet, but which piqued our interest (!), is that preprints were used for the peer review exercises. The authors argue that in contrast to the finalized published articles, preprints show the students a more realistic side of doing science: a situation in which things are constant work-in-progress and negative and inconsistent results are very common. Indeed, reporting negative results is more encouraged within the preprint space as can nicely be illustrated by the ongoing ASAPBio competition looking for the best preprints with negative/null or inconclusive results as the main finding.
The reported result that helping students increase their scientific literacy leads to a stronger sense of belonging and identity formation also resonated with us. It’s at the core of what we try to achieve here at preLights; creating a sense of community. In our own discussion about this preprint, we noted down that peer review classes could be the perfect antidote for the imposter syndrome often experienced by (young) researchers. What we also noted is that the biggest improvement in peer review ability was seen after the group exercises. Again, this stresses the importance of community building and providing researchers with the opportunity to learn from each other.
Interestingly, the authors of the preprint point out that the three tools they used to measure peer review ability all put a lot of emphasis on ‘tone’. Currently, it is quite common that reviewers are rather blunt, if not just rude and insulting, in their reviews. This is in sharp contrast with what was reported in this preprint: all the reviews prepared by the students were very constructive, and professional, and tended to point out strengths rather than (only) weaknesses. Although you cannot assume this would be true for all undergraduate student’ reviews, this observation does give one hope that setting the tone right at an early stage can help to ensure constructive and fair peer review in the future.
Questions for the authors
- Do you think it would be feasible for all universities to introduce a whole peer review module? Could they perhaps only offer the embedded module and/or the group peer review exercise which seemed to be the most helpful?
- How much of a role does the instructor play in the outcome of these peer review classes? How can the instructor from this study share his/her/their teaching methods?
- How could the peer review course be adapted for non-science students to help them understand the scientific method/role of peer review?
doi: https://doi.org/10.1242/prelights.33253
Read preprintSign up to customise the site to your preferences and to receive alerts
Register hereAlso in the scientific communication and education category:
From impact metrics and open science to communicating research: Journalists’ awareness of academic controversies
Isabella Cisneros et al.
An updated and expanded characterization of the biological sciences academic job market
Jennifer Ann Black et al.
Have AI-Generated Texts from LLM Infiltrated the Realm of Scientific Writing? A Large-Scale Analysis of Preprint Platforms
Amy Manson et al.