Oncogenic hijacking of a developmental transcription factor evokes therapeutic vulnerability for ROS-induction in Ewing sarcoma

Aruna Marchetto, Shunya Ohmura, Martin F. Orth, Jing Li, Fabienne S. Wehweck, Maximilian M. L. Knott, Stefanie Stein, David Saucier, Chiara Arrigoni, Julia S. Gerke, Michaela C. Baldauf, Julian Musa, Marlene Dallmayer, Tilman L. B. Hölting, Matteo Moretti, James F. Amatruda, Laura Romero-Pérez, Florencia Cidre-Aranaz, Thomas Kirchner, Giuseppina Sannino, Thomas G. P. Grünewald

Posted on: 12 April 2019

Preprint posted on 14 March 2019

Article now published in Nature Communications at

Oncogenic activation of the SOX6 developmental transcription program drives Ewing Sarcoma, but exposes its ROS-sensitive and druggable Achille’s heel.

Selected by Hannah Brunsdon

Categories: cancer biology



Ewing sarcoma (EwS) is the second most common paediatric cancer of bone and soft tissues.  85% of EwS are initiated by a chromosomal translocation generating the oncogenic fusion transcription factor EWSR1-FLI1. EWSR1-FLI1 binds to otherwise inert GGAA-microsatellites to act as an enhancer of nearby genes, thereby driving malignancy by drastically changing gene expression. In theory, the uniqueness of the EWSR1-FLI1 oncogene should make it a perfect target for therapies, but a number of factors have made this difficult so far.

As it is known that EwS probably originates in osteochondrogenic progenitor cells, and EWSR1-FLI1 drives the acquisition of undifferentiated cell fates, Marchetto and colleagues hypothesised that EWSR1-FLI1 might drive tumour malignancy through dysregulation of bone developmental pathways. In this preprint, they show how EWSR1-FLI1 activates the developmental bone transcription factor SOX6 in EwS to drive malignancy, but in doing so increases sensitivity to the anti-cancer drug Elesclomol.  


Key findings

Through analysis of previously generated microarray datasets, the authors identified SOX6 to be upregulated in EwS – although to a variable degree – relative to other cancers and healthy tissue. To test if EWSR1-FLI1 activity could be responsible for this specific SOX6 upregulation, the authors introduced Dox-inducible shRNA against EWSR1-FLI1 into EwS cell lines. This caused a strong downregulation of SOX6 both in vitro, and in vivo xenografts. Subsequent investigation of ChIP-seq data from two EwS cell lines identified a prominent EWSR1-FLI1 peak at a GGAA-microsatellite within intron 1 of SOX6, that was reduced upon EWSR1-FLI1 knockdown. This suggested that in EwS, EWSR1-FLI1 directly induces SOX6 expression.

The authors then asked whether this SOX6 upregulation contributes to EwS tumorigenicity. They first generated EwS cell lines harbouring Dox-inducible SOX6 shRNA, and then used Affymetrix Clariom D arrays to explore differential gene expression after Dox treatment. Gene set enrichment analysis showed that SOX6 knockdown caused depletion of proliferation-associated gene signatures. Validating this finding in vitro, SOX6 knockdown caused a reduction in viable EwS cell counts as well as a reduction in 2D clonogenic and 3D sphere formation capacities. Furthermore in vivo, Dox-induced SOX6 knockdown in EwS xenografts caused a significant reduction in tumour growth, suggesting that SOX6 upregulation in EwS contributes to proliferation, clonogenic growth and tumorigenicity.

Next, Marchetto and colleagues investigated whether the SOX6-high transcriptional programme in EwS could be a druggable therapeutic target. They investigated a published EwS gene expression dataset with matching drug response data to find a correlation between SOX6 expression levels and responsiveness to the drug Elesclomol. Elesclomol is known to have a pro-apoptotic effect in cancer as it increases ROS levels above a tolerable threshold. Addition of Elesclomol to EwS cells with high SOX6 expression dramatically decreased their viability relative to low-SOX6 osteosarcoma and mesenchymal stem cell lines. Importantly, mice treated with Elesclomol exhibited reduced tumour growth of EwS xenografts due to increases in apoptotic cells within tumours. This suggests that Elesclomol could be a promising candidate for treating incidences of EwS with high SOX6 levels.

In the final part of the preprint, the authors sought to understand why elevated SOX6 expression confers vulnerability to Elesclomol. The induction of ROS by Elesclomol in EwS cell lines seemed to be dependent on SOX6, as ROS elevation could be rescued by SOX6 knockdown. Returning to the microarray data, the authors identified TXNIP – an inhibitor of the thioredoxin antioxidant system – as being downregulated after SOX6 knockdown, suggesting that SOX6 could be involved in ROS metabolism. Interestingly, knockdown of TXNIP also reduced intracellular ROS levels in EwS cells, suggesting that increased SOX6 expression might elevate ROS in EwS by modulating antioxidant metabolic pathways.

Taking this all together, the authors conclude that the activation of the SOX6 developmental program by EWSR1-FLI1 drives tumorigenicity in EwS, but at the cost of increased oxidative stress, which sensitises it to Elesclomol.


Why I chose this preprint

As someone working in a lab that combines aspects of developmental biology with cancer research, I think this preprint is a great example of how knowledge of developmental signalling can provide clues about the mechanisms of tumour initiation in cancer, and also how this might be reversed. It was particularly interesting how knockdown of SOX6 or Elesclomol treatment reduced EwS tumour growth in vivo, and it will be interesting to see if Elesclomol is a viable non-toxic method for treating EwS longer term.


Questions for the authors

  1. The EwS cell lines used in this paper were selected as they had the highest SOX6 activity compared to other EwS cell lines. I think these were subsequently compared to non-EwS cell lines for experiments in this paper. Have the authors tried adding Elesclomol to EwS lines with intermediate or lower SOX6 levels to see if these are also more sensitive than non-EwS lines? I wonder if there are other targets of EWSR1-FLI1 in EwS that may also contribute towards Elesclomol sensitivity?
  2. Connected to this, the EwS SOX6-high cell lines display greater signs of oxidative stress when Elesclomol is added. If Elesclomol is not added, do EwS cells still have a higher baseline level of ROS compared to low-SOX6 EwS and non-EwS cells, which predisposes them to Elesclomol sensitivity over non-EwS cancers?




Read preprint (No Ratings Yet)

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the cancer biology category:

Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects

Ritobrata Ghose, Fabio Pezzano, Savvas Kourtis, et al.

Selected by 16 May 2024

Teodora Piskova

Cell Biology

Spatial transcriptomics elucidates medulla niche supporting germinal center response in myasthenia gravis thymoma

Yoshiaki Yasumizu, Makoto Kinoshita, Martin Jinye Zhang, et al.

Selected by 27 March 2024

Jessica Chevallier


Invasion of glioma cells through confined space requires membrane tension regulation and mechano-electrical coupling via Plexin-B2

Chrystian Junqueira Alves, Theodore Hannah, Sita Sadia, et al.

Selected by 13 February 2024

Jade Chan

Cancer Biology

preLists in the cancer biology category:

BSCB-Biochemical Society 2024 Cell Migration meeting

This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.


List by Reinier Prosee

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23


List by Alex Eve

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.


List by Helen Zenner

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.


List by Nadja Hümpfer et al.


The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!


List by Osvaldo Contreras

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.


List by Alex Eve

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)


List by Madhuja Samaddar et al.

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.


List by Rob Hynds

Anticancer agents: Discovery and clinical use

Preprints that describe the discovery of anticancer agents and their clinical use. Includes both small molecules and macromolecules like biologics.


List by Zhang-He Goh

Biophysical Society Annual Meeting 2019

Few of the preprints that were discussed in the recent BPS annual meeting at Baltimore, USA


List by Joseph Jose Thottacherry