Soil microbial habitats in an extreme desert Mars-analogue environment
Posted on: 26 July 2018
Preprint posted on 20 June 2018
Are Martians microbes? A characterization of sediment and bacterial community compositions of the Atacama Desert, a Mars analogue environment on Earth.
Selected by Daphne NgCategories: ecology, microbiology
Background
The presence of life on Mars remains a mystery. Data from missions to Mars suggest that resources required for life may have once been abundant on the planet, raising the possibility that Mars may have been conducive for microbial life. The characterization of sediment geochemistry and microbial ecology in Mars-like environments on Earth provides valuable insights for the development and testing of Mars exploration strategies, especially in the detection of biosignatures.
The Atacama Desert in Chile is widely regarded as a terrestrial habitat which most closely resembles the dry environment on Mars. It is the driest desert on Earth with rare and random rainfall events. In this study, to simulate Martian drilling operations and limitations, an autonomous rover was used to recover and analyse sediments in the hyper-arid core of the Atacama Desert. Terrains similar to those found on Mars were sampled – a gravel desert pavement and an evaporate-rich playa. Mineralogical analyses were performed using an on-board Raman spectrometer. Bacterial communities were analysed by next generation sequencing of environmental genomic DNA extracted from sediments.
Key findings
As some minerals such as anhydrite are associated with drier conditions, the authors analysed the mineral compositions of the sediments to classify them into zones based on moisture content. Sediments were classified into distinct zones: (a) a surface zone which is the driest except immediately following rainfall; (b) a mid-depth zone where there is the highest water content and (c) a deep subsurface zone where water availability is lowest. Increased levels of sulfate-sulfur, cations and electrical conductivity of playa subsurface sediments suggested increasing osmotic stress.
Very little DNA was recovered from subsurface sediments despite widespread surface colonization by microorganisms. Hence, the presence of life in subsurface habitats was not associated with microbial colonization. Temperature variations also did not significantly influence microbial colonization. Sulfate-sulfur, depth and soluble salts were most strongly associated with subsurface sediments, from which low or no DNA was recovered. This suggests that osmotic stress and water limitation are the main factors which result in extinction of life.
Bacterial diversity decreased with depth, suggesting that depth is a major determinant of bacterial diversity. Microbial communities were highly specialized and dominated by Chloroflexi, Actinobacteria and Alphaproteobacteria. Thick-walled Actinobacteria were prevalent in low and mid-depth subsurface habitats. At shallow depths, halotolerant, alkalotolerant, spore-forming as well as desiccation tolerant actinobacterial groups were abundant. Mid-depth (300-<500 mm) sediments with the highest water availability, supported the highest bacterial diversity. In contrast, low diversity was observed in deeper communities where water availability is low. The deepest desert pavement community displayed higher abundance of acidimicrobiales.
Hence, extreme selective pressure may greatly reduce microbial community in the deepest subsurface habitats. The findings of the study showed that an autonomous rover drilling platform may be useful in the search for biosignatures and other indicators of life on Mars.
What I like about this preprint
We have always wondered if life is unique to Earth. Microorganisms like bacteria have existed long before us and have colonized virtually every corner of the planet. Bacteria are major drivers of biogeochemical processes in ecosystems. However, many bacteria in the environment are “unculturable”, which poses a barrier to studying them. This study demonstrates the application of next generation sequencing approaches to characterize bacterial communities in one of the world’s most extreme habitats. From this study, the most important factors for the existence of life, water availability and low osmotic stress, were elucidated. This preprint also provides fascinating insights into the various mechanisms by which bacteria may survive extreme conditions like the Martian environment.
Future directions and questions for the author
- Ionizing radiation induces cellular damage and is also a factor which influences microbial communities. As the ionizing radiation of Mars is higher than that of Earth, the authors may want to consider measuring the incident radiation at Atacama Desert. The measurement of incident radiation and other parameters at Atacama Desert will provide more information as to whether the sediments of Atacama Desert are accurate analogues for the Mars environment.
- It would be interesting if the authors can also characterize other microorganisms such as fungi in the sediments.
Sign up to customise the site to your preferences and to receive alerts
Register hereAlso in the ecology category:
Precision Farming in Aquaculture: Use of a non-invasive, AI-powered real-time automated behavioural monitoring approach to predict gill health and improve welfare in Atlantic salmon (Salmo salar) aquaculture farms
Jasmine Talevi
Gestational exposure to high heat-humidity conditions impairs mouse embryonic development
Girish Kale, preLights peer support
Blue appendages and temperature acclimation increase survival during acute heat stress in the upside-down jellyfish, Cassiopea xamachana
Maitri Manjunath
Also in the microbiology category:
Significantly reduced, but balanced, rates of mitochondrial fission and fusion are sufficient to maintain the integrity of yeast mitochondrial DNA
Leeba Ann Chacko
The bat Influenza A virus subtype H18N11 induces nanoscale MHCII clustering upon host cell attachment
Mitchell Sarmie, Mohammed A. Jalloh
Characterization of natural product inhibitors of quorum sensing in Pseudomonas aeruginosa reveals competitive inhibition of RhlR by ortho-vanillin
UofA IMB565 et al.
preListsecology category:
in thepreLights peer support – preprints of interest
This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.
List by | preLights peer support |
EMBO | EMBL Symposium: The organism and its environment
This preList contains preprints discussed during the 'EMBO | EMBL Symposium: The organism and its environment', organised at EMBL Heidelberg, Germany (May 2023).
List by | Girish Kale |
Bats
A list of preprints dealing with the ecology, evolution and behavior of bats
List by | Baheerathan Murugavel |
Also in the microbiology category:
BioMalPar XVI: Biology and Pathology of the Malaria Parasite
[under construction] Preprints presented at the (fully virtual) EMBL BioMalPar XVI, 17-18 May 2020 #emblmalaria
List by | Dey Lab, Samantha Seah |
1
ECFG15 – Fungal biology
Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome
List by | Hiral Shah |
EMBL Seeing is Believing – Imaging the Molecular Processes of Life
Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019
List by | Dey Lab |
Antimicrobials: Discovery, clinical use, and development of resistance
Preprints that describe the discovery of new antimicrobials and any improvements made regarding their clinical use. Includes preprints that detail the factors affecting antimicrobial selection and the development of antimicrobial resistance.
List by | Zhang-He Goh |