Close

RefPlantNLR: a comprehensive collection of experimentally validated plant NLRs

Jiorgos Kourelis, Sophien Kamoun

Posted on: 21 July 2020

Preprint posted on 9 July 2020

RefPlantNLR: With all NLRs under one roof, appreciate the diversity and address the gaps

Selected by Hiral Shah

The Backstory

The nucleotide-binding leucine-rich repeat (NLR) is a large family of intracellular receptors involved in pathogen recognition, functioning as gatekeepers of plant immunity. The activation of NLRs by pathogen effectors, directly or indirectly, induces plant immune responses referred to as effector-triggered immunity (ETI) that prevents the proliferation of the pathogen. Though some “singleton” NLRs achieve pathogen sensing as well as immune signaling, many NLRs are either dedicated sensors or helpers in downstream signalling, functioning through gene clusters and networks.

With an impact on disease resistance, NLRs are a factor in crop breeding and believed to be involved in a co-evolution arms race with pathogen effectors through rapid variation in sequence and copy number, across species. Classically, plant NLRs are known to have a tripartite domain architecture with an N-terminal domain, a central NB-ARC domain (involved in nucleotide binding and oligomerization – NOD) and a C-terminal LRR domain. However, recent studies have uncovered plant NLRs with many different domains. For instance, the rice protein Pb1 has a NOD domain different from the canonical NB-ARC, but maintains overall NLR structure. The variable N terminal domain forms the basis of the classification of NLRs into four sub-clades, CC-NLR, TIR-NLR, CCR-NLR and the recent addition, the CCG10 NLR clade.

The study puts together an extensive reference dataset of experimentally validated 415 NLRs across 31 plant genera and 4 NLR clades by manually screening literature for genes associated with disease resistance or susceptibility, effector-triggeredimmune responses or their regulation and downstream signaling, necrosis and allelic series of NLRs, followed by annotation to ensure the presence of a NB-ARC domain along with additional domains. It is the first dataset of the OpenPlantNLR community. The study also provides a more compact set of 235 proteins after factoring in redundancies.

  

Key Findings

The dataset incorporates information about a wide range of aspects such as amino acid and coding sequences, plant source, pathogen, effectors, associated helper components and domain structure, uncovering 407 unique NLRs and 347 distinct NB-ARC domains. NLRs like RPP7 with identical sequences highlight the importance of context dependent regulation in different plant backgrounds.

The study describes the plant-wise distribution of validated NLRs drawing our attention to a skew towards the well-studied plants, with a substantial proportion of plant diversity not accounted for and clearly no members from non-flowering plants(Fig1A). The plant laboratory workhorse Arabidopsis, economically important cereals, rice, wheat and barley, and Solanaceae account for three-fourths of the NLRs in this set, a fraction that does not change much even in the 235 protein dataset. The fact that Arabidopsisis the only taxon with members from all NLR clades and the cereals show a bias towards CC-NLRs,highlights the current gaps, but also potential areas for the way forward in NLR biology.

Figure 1. A shows the number of experimentally validated NLRs per plant genus. (from Fig1A in preprint). B depicts the domain diversity of NLRs (from Fig 3C in preprint). Taken from Kourelis and Kamoun, 2020, provided under CC-BY 4.0.

 

The over-representation is also seen with respect to NLR clades. CC-NLR and TIR NLR are the most common domain combinations making up almost 80% of the validated NLRs. The remaining 20% forms a unique and interesting set, covering novel and non-canonical domain combinations, duplications and arrangements, at both the N and/or C-terminal domains (Fig 1B). For all those interested, the preprint has many interesting examples and details.The diversity is also seen in NLR protein lengths which vary between clades. NB-ARC domains show a tighter distribution barring a few extremely short and long one that stretched the boundaries of NLR domain diversity.

Domain gains are a recurrent feature of NLR evolution making prediction of plant NLR stricky. Though there are several NLR extractors that identify canonical NLR characteristics, this comprehensive dataset of functionally validated proteins with all its diversity could prove an important benchmarking resource for future NLR annotation tools.

 

Why I like it

The study provides a phylogenetic framework of experimentally validated NLRs, encouraging us to appreciate the structural diversity and directs the field towards the potential of under-studied plant groups and NLR clades. The authors are crowdsourcing for suggestions to improve the study with more comprehensive analysis which will be incorporated in the subsequent version to be submitted to the journal.

Tags: annotation, dataset, disease, plant, resistance, resource

doi: https://doi.org/10.1242/prelights.23291

Read preprint (No Ratings Yet)

Author's response

Sophien Kamoun shared

Questions

1. What are the most interesting aspects of NLRs? Could you tell us about your decision to study them and obtaining community feedback on this preprint?

NLRs are extraordinarily diverse and tend to evolve rapidly. They are the most rapidly evolving plant genes and as such are worthy studying. They also complement our work on pathogen effectors and are useful when deployed in agriculture.

2. Is it possible to use the number of predicted NLRs for each plant group as a baseline for the data in Fig. 1? Are certain NLR clades better studied in certain plants or do they represent the overall distribution of NLRs in a particular plant family? For instance, do cereals show an abundance of CC-NLRs or are they the more frequently investigated clade in this plant group?

That’s an excellent suggestion and it’s worthy of a figure in the revision. We do wish first to benchmark current methods for NLR predictions. One outcome should be a more robust NLRome per species and at that stage it would be worth it to perform the analysis you propose.

3. How do you think benchmarking with this dataset would alter the predicted NLRome, expansion, diversification or fine tuning?Are there any new clues from the diverse architectures for engineering novel NLRs?

We don’t know yet. But anecdotal evidence indicates that NLR prediction software have limitations and biases. We need to understand this better using RefPlantNLR.

4. Is there information about the regulation and oligomerisation states of many NLRs?

This remains too limited at the time. We know this for only a few NLRs. But it would be great to add this information in the future.

5. The list shows viral, bacterial, fungal and oomycete pathogens. Do the pathogens also show an over representation of well-studied organisms?

Most certainly. And this is another excellent suggestion for the next version. I’d say this is worth of a Figure similar to Figure 1.

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the evolutionary biology category:

A high-coverage genome from a 200,000-year-old Denisovan

Stéphane Peyrégne, Diyendo Massilani, Yaniv Swiel, et al.

AND

A global map for introgressed structural variation and selection in humans

PingHsun Hsieh, Natthapon Soisangwan, David S. Gordon, et al.

Selected by 02 December 2025

Siddharth Singh

Evolutionary Biology

Dissecting Gene Regulatory Networks Governing Human Cortical Cell Fate

Jingwen W. Ding, Chang N. Kim, Megan S. Ostrowski, et al.

Selected by 14 November 2025

Manuel Lessi

Neuroscience

Beyond venomous fangs: Uloboridae spiders have lost their venom but not their toxicity

Xiaojing Peng, Ludwig Dersch, Josephine Dresler, et al.

Selected by 13 November 2025

Daniel Fernando Reyes Enríquez, Marcus Oliveira

Evolutionary Biology

Also in the pathology category:

Schistosoma haematobium DNA and Eggs in the Urine Sample of School-Age Children (SAC) in South-West Nigeria

Taiwo Mofadeke Jaiyeola, Folahanmi Tomiwa Akinsolu, Adesola Zaidat Musa, et al.

Selected by 24 November 2025

Hala Taha

Epidemiology

FUS Mislocalization Rewires a Cortical Gene Network to Drive 2 Cognitive and Behavioral Impairment in ALS

Raphaelle CASSEL, Félicie LORENC, Aurélie BOMBARDIER, et al.

Selected by 14 July 2025

Taylor Stolberg

Neuroscience

Integrin conformation-dependent neutrophil slowing obstructs the capillaries of the pre-metastatic lung in a model of breast cancer

Frédéric Fercoq, Gemma S. Cairns, Marco De Donatis, et al.

Selected by 07 October 2024

Simon Cleary

Cancer Biology

Also in the plant biology category:

Actin Counters Geometry to Guide Plant Cell Division

Camila Goldy, Samantha Moulin, Yutaro Shimizu, et al.

Selected by 26 November 2025

Jeny Jose

Cell Biology

The nucleus follows an internal cellular scale during polarized root hair cell development

Jessica M. Orr, M. Arif Ashraf

Selected by 04 September 2025

Jeny Jose

Plant Biology

Conservation and divergence of regulatory architecture in nitrate-responsive plant gene circuits

C Bian, GS Demirer, MT Oz, et al.

Selected by 14 March 2025

Jeny Jose

Plant Biology

preLists in the evolutionary biology category:

October in preprints – DevBio & Stem cell biology

Each month, preLighters with expertise across developmental and stem cell biology nominate a few recent developmental and stem cell biology (and related) preprints they’re excited about and explain in a single paragraph why. Short, snappy picks from working scientists — a quick way to spot fresh ideas, bold methods and papers worth reading in full. These preprints can all be found in the October preprint list published on the Node.

 



List by Deevitha Balasubramanian et al.

October in preprints – Cell biology edition

Different preLighters, with expertise across cell biology, have worked together to create this preprint reading list for researchers with an interest in cell biology. This month, most picks fall under (1) Cell organelles and organisation, followed by (2) Mechanosignaling and mechanotransduction, (3) Cell cycle and division and (4) Cell migration

 



List by Matthew Davies et al.

Biologists @ 100 conference preList

This preList aims to capture all preprints being discussed at the Biologists @100 conference in Liverpool, UK, either as part of the poster sessions or the (flash/short/full-length) talks.

 



List by Reinier Prosee, Jonathan Townson

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

preLights peer support – preprints of interest

This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.

 



List by preLights peer support

EMBO | EMBL Symposium: The organism and its environment

This preList contains preprints discussed during the 'EMBO | EMBL Symposium: The organism and its environment', organised at EMBL Heidelberg, Germany (May 2023).

 



List by Girish Kale

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

Planar Cell Polarity – PCP

This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.

 



List by Ana Dorrego-Rivas

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20

 



List by Maiko Kitaoka et al.

ECFG15 – Fungal biology

Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome

 



List by Hiral Shah

COVID-19 / SARS-CoV-2 preprints

List of important preprints dealing with the ongoing coronavirus outbreak. See http://covidpreprints.com for additional resources and timeline, and https://connect.biorxiv.org/relate/content/181 for full list of bioRxiv and medRxiv preprints on this topic

 



List by Dey Lab, Zhang-He Goh

1

SDB 78th Annual Meeting 2019

A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.

 



List by Alex Eve

Pattern formation during development

The aim of this preList is to integrate results about the mechanisms that govern patterning during development, from genes implicated in the processes to theoritical models of pattern formation in nature.

 



List by Alexa Sadier

Also in the pathology category:

October in preprints – DevBio & Stem cell biology

Each month, preLighters with expertise across developmental and stem cell biology nominate a few recent developmental and stem cell biology (and related) preprints they’re excited about and explain in a single paragraph why. Short, snappy picks from working scientists — a quick way to spot fresh ideas, bold methods and papers worth reading in full. These preprints can all be found in the October preprint list published on the Node.

 



List by Deevitha Balasubramanian et al.

October in preprints – Cell biology edition

Different preLighters, with expertise across cell biology, have worked together to create this preprint reading list for researchers with an interest in cell biology. This month, most picks fall under (1) Cell organelles and organisation, followed by (2) Mechanosignaling and mechanotransduction, (3) Cell cycle and division and (4) Cell migration

 



List by Matthew Davies et al.

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

ECFG15 – Fungal biology

Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome

 



List by Hiral Shah

COVID-19 / SARS-CoV-2 preprints

List of important preprints dealing with the ongoing coronavirus outbreak. See http://covidpreprints.com for additional resources and timeline, and https://connect.biorxiv.org/relate/content/181 for full list of bioRxiv and medRxiv preprints on this topic

 



List by Dey Lab, Zhang-He Goh

1

Cellular metabolism

A curated list of preprints related to cellular metabolism at Biorxiv by Pablo Ranea Robles from the Prelights community. Special interest on lipid metabolism, peroxisomes and mitochondria.

 



List by Pablo Ranea Robles