Distributed correlates of visually-guided behavior across the mouse brain
Posted on: 17 December 2018
Preprint posted on 20 November 2018
Article now published in Nature at http://dx.doi.org/10.1038/s41586-019-1787-x
Simultaneous recording of hundreds of neurons with ‘Neuropixel’ silicon probe reveals widely distributed correlates of visually guided behaviour across multiple brain regions.
Selected by Craig BertramCategories: animal behavior and cognition, neuroscience
Background
The study of neurophysiological activity during behavioural tasks has a long and informative history; however, previous technology had limited the scope of what we could discover. Many studies have focused on the role of a single brain region in a task. This work has revealed that multiple brain regions are active throughout each stage of visual guided behaviour. Many of the regions involved are reciprocally connected, and so fully understanding their role involves understanding their activity in coordination, not just in isolation.
Existing research methods have demanded a compromise between how many locations could be measured simultaneously and the spatial resolution at which they could be measured. Neurophysiology has long focused on the activity of individual neurons, but it has been a significant challenge to record from multiple single neurons in multiple brain regions with traditional techniques. Brain imaging techniques such as fMRI enables brain-wide recording, but the signal from each voxel is a proxy for the activity of a great number of neurons. Neuropixels silicon probes are a step forwards in resolving this compromise. They enable the simultaneous recording and individual resolution of hundreds of neurons across multiple brain regions.
In this study, Steinmetz and colleagues from UCL have used Neuropixels probes to simultaneously record from hundreds of neurons in mice performing a visual discrimination task. Based on the neural dynamics, they outline a behaviour-related network spread across multiple brain regions.
Key findings
Using Neuropixels silicon probes, almost 30,000 neurons were recorded across 42 brain regions during a head-fixed visually-guided behavioural task (92 probe insertions over 39 sessions in 10 mice, average of 747+/-38 neurons per session). Mice were trained in a two-alternative unforced choice task, which involved turning a wheel to the left or right to indicate the location of a visual grating with higher contrast, or to withhold a response in the absence of any stimulus.
Neuronal activity in nearly all recorded regions increased following trial onset, first in visual regions contralateral to the stimulus, then to other regions, including regions ipsilateral to the target stimulus. Passive presentation of the stimuli outside of the behavioural task produced activation that was more limited in scope and contained solely within the contralateral hemisphere. This suggests the widespread activation was specific to task engagement.
Further activity specific to task engagement could be seen in the pre-stimulus activity. In the 0.2 s prior to stimulus onset, firing rates in many regions were substantially different between passive presentation and task conditions. Pre-stimulus firing rates were lower in visual cortex and visual thalamus during task engagement, but higher in regions including the basal ganglia and midbrain structures. Interestingly, pre-stimulus activity on test trials when the animal failed to respond resembled passive presentation trials more closely than successful test trials.
Although many neurons across several regions responded throughout various stages of the task (stimulus presentation, movement, reward presentation), the authors found relatively few neurons that discriminated between the choice to move in one direction or the other. Those neurons that did discriminate accounted for a small subset of neurons in a limited set of regions – frontal cortex (Mos, PL, and Mop), striatum (CP) and midbrain (SNr, SCm, MRN, and ZI). Neurons in the forebrain and midbrain encoded choice differently – neurons in the midbrain almost exclusively increased firing during choices in the contralateral direction, while only a slight majority of choice-selective neurons in the forebrain preferred contralateral choices. Further, activity in the majority of choice-selective midbrain neurons was suppressed prior to their non-preferred choice, while this was only true of a much smaller proportion of choice-selective forebrain neurons.
Why is it important?
This study provides an extensive picture of the coordinated activity of individual neurons in a widespread network of brain regions during a behavioural task. Although the activity of individual cells in a range of brain regions have been studied before, this study leverages the Neuropixels silicon probes to simultaneously record a great number of neurons from multiple regions. These simultaneous recordings offer convincing evidence that task-related activity is distributed across a wide range of brain regions in a way that separated recordings do not. These simultaneous recordings allow the authors to suggest a model of circuit dynamics across multiple brain regions that is supported more directly than if the conclusions were built upon the combination of several experiments.
Further, the dataset is due to be shared by the investigators upon publication of the paper. This will allow other researchers to contribute by analysing the data in new ways and in greater detail.
Questions arising
How is the activity in each of these regions causally related to behaviour during the task? The authors refer to other studies where optogenetic inhibition of selected brain regions impair task performance.
How is activity in each brain region causally related to activity in others and how well can the system resist perturbation at each point?
The authors describe the responses as “near-simultaneous” – can we resolve the temporal profile of responses in each region relative to others and determine the flow of activity through the network?
What system modulates the different pre-stimulus activity that reflects ‘task engagement’? The authors suggest dopamine as a neuromodulatory agent in the basal ganglia. Acetylcholine is another contender, as it has been shown to change baseline activity and signal-noise ratio during attentive engagement.
doi: https://doi.org/10.1242/prelights.6488
Read preprintSign up to customise the site to your preferences and to receive alerts
Register hereAlso in the animal behavior and cognition category:
Pharyngeal neuronal mechanisms governing sour taste perception in Drosophila melanogaster
Matthew Davies
Precision Farming in Aquaculture: Use of a non-invasive, AI-powered real-time automated behavioural monitoring approach to predict gill health and improve welfare in Atlantic salmon (Salmo salar) aquaculture farms
Jasmine Talevi
Impaired 26S proteasome causes learning and memory deficiency and induces neuroinflammation mediated by NF-κB in mice
Gustavo Stelzer, Marcus Oliveira
Also in the neuroscience category:
The RNA binding protein HNRNPA2B1 regulates RNA abundance and motor protein activity in neurites
Felipe Del Valle Batalla
Pharyngeal neuronal mechanisms governing sour taste perception in Drosophila melanogaster
Matthew Davies
Triglyceride metabolism controls inflammation and APOE4-associated disease states in microglia
Gustavo Stelzer, Marcus Oliveira
preListsanimal behavior and cognition category:
in the9th International Symposium on the Biology of Vertebrate Sex Determination
This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.
List by | Martin Estermann |
Bats
A list of preprints dealing with the ecology, evolution and behavior of bats
List by | Baheerathan Murugavel |
FENS 2020
A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020
List by | Ana Dorrego-Rivas |
Also in the neuroscience category:
2024 Hypothalamus GRC
This 2024 Hypothalamus GRC (Gordon Research Conference) preList offers an overview of cutting-edge research focused on the hypothalamus, a critical brain region involved in regulating homeostasis, behavior, and neuroendocrine functions. The studies included cover a range of topics, including neural circuits, molecular mechanisms, and the role of the hypothalamus in health and disease. This collection highlights some of the latest advances in understanding hypothalamic function, with potential implications for treating disorders such as obesity, stress, and metabolic diseases.
List by | Nathalie Krauth |
‘In preprints’ from Development 2022-2023
A list of the preprints featured in Development's 'In preprints' articles between 2022-2023
List by | Alex Eve, Katherine Brown |
CSHL 87th Symposium: Stem Cells
Preprints mentioned by speakers at the #CSHLsymp23
List by | Alex Eve |
Journal of Cell Science meeting ‘Imaging Cell Dynamics’
This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.
List by | Helen Zenner |
ASCB EMBO Annual Meeting 2019
A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)
List by | Madhuja Samaddar et al. |
SDB 78th Annual Meeting 2019
A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.
List by | Alex Eve |
Autophagy
Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.
List by | Sandra Malmgren Hill |
Young Embryologist Network Conference 2019
Preprints presented at the Young Embryologist Network 2019 conference, 13 May, The Francis Crick Institute, London
List by | Alex Eve |