Regional heterogeneity of early GABAergic interneuron excitation in vivo
Posted on: 17 July 2019
Preprint posted on 13 July 2019
Article now published in Science Advances at http://dx.doi.org/10.1126/sciadv.aba1430
Paradoxical excitatory effect of GABAergic inhibitory neurons early in development is not universal
Selected by Craig BertramCategories: neuroscience
Summary
Although gamma-aminobutyric acid (GABA) is thought of as the primary inhibitory neurotransmitter in vertebrate nervous systems, it has been suggested that it has an excitatory function in early developmental stages of the brain. Further nuance has been added to the picture by evidence that in some brain regions GABAergic innervation is inhibitory even in early development. Here, Murata and Colonnese demonstrate, using Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), that GABAergic interneurons cause local excitation in hippocampal CA1 at postnatal day 3 (P3), which switches to inhibition at postnatal day 7 (P7), while cortical GABAergic interneurons cause inhibition at both ages.
Findings
Murata and Colonnese expressed either the inhibitory kappa-opioid receptor DREADD or the excitatory DREAD hM3Dq in hippocampus or visual cortex of GAD2-cre mice via an adeno-associated virus. The majority of the recordings were made in unanaesthetised, head-fixed mice using multi-electrode arrays, although some current-clamp recordings were made in brain slices. Expression of the DREADDs were limited to GAD2+ neurons (GAD2 is an enzyme in the production of GABA, and is used as a marker for GABAergic neurons). Only animals with viral expression of the DREADDs surrounding the recording site and limited to the region of injection were analysed.
First, current clamp recordings are used to establish that activating the inhibitory and excitatory DREADDs have a hyperpolarising and depolarising effect on GABAergic neurons respectively at both P3 and P11, demonstrating that changes in the effect of DREADD agonist administration are due to changes in the effect of GABAergic neurons, and not changes in the effect of the DREADDs.
In line with the paradoxical excitatory early-development effect of GABA, neural activity in the hippocampus at P3 was suppressed by subcutaneous injection of SalB (the agonist for the inhibitory DREADD). That is, GABA activity was suppressed by the DREADD, and activity in the region that receives GABAergic projections was also suppressed, suggesting that an excitatory effect had been reduced. Specifically, multiunit activity in the pyramidal layer decreased, the amplitude and occurence but not duration of early Sharp Waves (eSPWs) and the LFP in a broad frequency range were decreased. In contrast, injections of CNO, the agonist of the excitatory DREADD, increased pyramidal MUA but did not alter eSPW amplitude nor LFP power.
At P7 the effects were in line with the traditional inhibitory effect of GABA: inhibiting GABAergic neuron activity via KORD-DREADD agonist increased MUA in the GABAergic-receiving pyramidal layer of the hippocampus. LFP power in 6-14 Hz frequencies also increased; however there was no alteration of eSPW occurrence, duration, or amplitude of eSPWs. Enhancing GABAergic neuron activity via the hM3Dq-DREADD agonist decreased LFP power in a broad range and decreased pyramidal MUA, but did not significantly affect eSPW. At P11 modulating GABAergic neuronal activity had similar effects on MUA activity and LFP power.
In contrast to hippocampus, administration of inhibitory DREADD agonists at P3 increased MUA, while administration of the excitatory DREADD agonist decreased MUA, suggesting that there was a net inhibitory affect of enhancing GABAergic activity in the cortex. LFP power or eSPW activity was not significantly affected by either modulation. Modulation at P7 and P11 had similar effects.
Finally, they investigate the effect of modulating both cortical and hippocampal GABAergic neurons simultaneously on hippocampal CA1 neurons. This is examined because there are substantial cortical projections to CA1 at this age. Murata and Colonnese found that cortical inhibitory GABAergic input overwhelms the local excitatory GABAergic input in hippocampus – administration of inhibitory DREADD agonist has a net excitatory effect, while administration of the excitatory DREADD agonist has a net inhibitory effect.
Why is it important?
The results demonstrate that the picture of developing inhibitory and excitatory circuitry is more complex than first thought. Understanding changes in the developing neural circuitry is key to understanding how the circuit is shaped by input and intrinsic activity. Demonstrating heterogeneity in developmental changes in the effects of major neurotransmitter groups demonstrates how important it is to examine a wide range of model systems, and not use one circuit (e.g. synapses onto hippocampal CA1 neurons) as a generally representative model. Considering developmental changes in circuitry is particularly important in brain slice electrophysiology, where tissue from younger animals is often used to make it easier to patch.
Questions arising
An interesting point arising from this paper, which seems to be unaddressed, is that the Murata and Colonnese found opposing effects in hippocampal neurons from activating different populations of GABAergic inputs (i.e. different presynaptic neurons), but the change in the effect of GABA from excitatory to inhibitory has been linked with changes in the postsynaptic neuron: expression of chloride transporters such as KCC2 (potassium chloride transporter member 5). KCC2 is responsible for reducing chloride concentrations and so as its expression increases through development there is greater inward GABA-mediated chloride influx. If KCC2 is connected to the regional differences in the change of the effect of GABA from excitatory to inhibitory, then we might expect the effects of GABA to be consistent within a given region regardless of the source of input.
doi: https://doi.org/10.1242/prelights.12141
Read preprintSign up to customise the site to your preferences and to receive alerts
Register hereAlso in the neuroscience category:
The RNA binding protein HNRNPA2B1 regulates RNA abundance and motor protein activity in neurites
Felipe Del Valle Batalla
Pharyngeal neuronal mechanisms governing sour taste perception in Drosophila melanogaster
Matthew Davies
Triglyceride metabolism controls inflammation and APOE4-associated disease states in microglia
Gustavo Stelzer, Marcus Oliveira
preListsneuroscience category:
in the2024 Hypothalamus GRC
This 2024 Hypothalamus GRC (Gordon Research Conference) preList offers an overview of cutting-edge research focused on the hypothalamus, a critical brain region involved in regulating homeostasis, behavior, and neuroendocrine functions. The studies included cover a range of topics, including neural circuits, molecular mechanisms, and the role of the hypothalamus in health and disease. This collection highlights some of the latest advances in understanding hypothalamic function, with potential implications for treating disorders such as obesity, stress, and metabolic diseases.
List by | Nathalie Krauth |
‘In preprints’ from Development 2022-2023
A list of the preprints featured in Development's 'In preprints' articles between 2022-2023
List by | Alex Eve, Katherine Brown |
CSHL 87th Symposium: Stem Cells
Preprints mentioned by speakers at the #CSHLsymp23
List by | Alex Eve |
Journal of Cell Science meeting ‘Imaging Cell Dynamics’
This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.
List by | Helen Zenner |
FENS 2020
A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020
List by | Ana Dorrego-Rivas |
ASCB EMBO Annual Meeting 2019
A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)
List by | Madhuja Samaddar et al. |
SDB 78th Annual Meeting 2019
A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.
List by | Alex Eve |
Autophagy
Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.
List by | Sandra Malmgren Hill |
Young Embryologist Network Conference 2019
Preprints presented at the Young Embryologist Network 2019 conference, 13 May, The Francis Crick Institute, London
List by | Alex Eve |