Close

Human DNA-PK activates a STING-independent DNA sensing pathway

Katelyn Burleigh, Joanna H. Maltbaek, Stephanie Cambier, Richard Green, Michael Gale Jr., Richard C. James, Daniel B. Stetson

Posted on: 19 April 2019

Preprint posted on 23 March 2019

Article now published in Science Immunology at http://dx.doi.org/10.1126/sciimmunol.aba4219

Taking the STING out of sensing cytosolic DNA: A new pathway in humans mediated by the protein DNA-PK

Selected by Connor Rosen

Categories: immunology, microbiology

Background:

The presence of cytosolic DNA is a key danger signal in immunity, triggering a global anti-viral state through the activation of type I interferons. The canonical DNA-sensing pathway in mammalian cells is the cGAS-STING pathway. Recognition of DNA by cGAS leads to production of the second messenger cGAMP, which activates STING, leading to subsequent activation of the transcription factor IRF3 and type I interferon production. While multiple regulators of the process or alternate sensors have been proposed, all proposed DNA-sensing pathways to date converge on STING. This preprint by Burleigh et al uncovers a STING-Independent DNA Sensing Pathway (SIDSP) that exists in human cells.

 

Key Findings:

  • A STING-independent DNA sensing pathway exists in human, but not mouse, cells.

The authors began by examining the activity of the adenovirus E1a viral oncogene, which has STING-antagonist activity. However, the authors demonstrate that E1a also suppresses responses to DNA in STING-deficient cells, suggesting a second mechanism of DNA sensing also antagonized by E1a. They further show that STING-deficient human, but not mouse, cells respond to DNA with robust type I interferon induction, in an IRF3-dependent manner.

  • The SIDSP requires DNA-PK activity.

The previous experiments established that damaged DNA (i.e. with ends exposed) triggered the SIDSP. This suggested a potential role for DNA-PK, a sensor of DNA double-stranded breaks involved in DNA repair. Pharmacological and genetic blockade of DNA-PK established that DNA-PK is required for the SIDSP. This enabled further studies of the gene program induced by the SIDSP, using antagonists of DNA-PK.

  • DNA-PK phosphorylates HSPA8.

The authors identified that the SIDSP, but not STING or RIG-I signaling, also results in the phosphorylation of the heat shock protein HSPA8. The C-terminus of HSPA8 has a sequence matching the IRF3 phosphorylation site, and seems to be phosphorylated at the corresponding residues. The phosphorylation of HSPA8 by DNA-PK also matched the species-specificity of the SIDSP, as mouse DNA-PK was unable to phosphorylate either mouse or human HSPA8 while human DNA-PK could phosphorylate either HSPA8. This suggests that HSPA8 phosphorylation may be a component of the SIDSP, or minimally indicative of conditions under which the SIDSP is functional.

 

Importance:

This study convincingly demonstrates the existence of the SIDSP in human cells and sets multiple paths for future investigation, through the delineation of an effector, target, and inhibitors of the pathway. Additionally, both agonists and antagonists of STING are under preclinical or clinical evaluation for tumor immunotherapy and treatment of inflammatory diseases, respectively, and the discovery of complementary pathways existing in humans but not mice may be critical for fully effective targeting of DNA sensing.

 

Moving Forward:

  • This work opens up a wide field of investigation, including many questions the authors bring up. Some particularly interesting avenues will be the regulation of self/non-self discrimination by DNA-PK, the intermediate proteins between DNA-PK and IRF3 phosphorylation (if any), and the importance of HSPA8 phosphorylation both in the SIDSP and more broadly in cellular physiology.
  • The SIDSP has slower kinetics than the STING-dependent pathway, as shown globally through the mRNA-seq experiment. This may suggest possible signaling steps for the SIDSP – changes such as degradation of inhibitory checkpoint, new translation (potentially of HSPA8 client proteins), or cellular redistribution of proteins (e.g. nuclear-cytoplasmic shuttling of DNA-PK) all would require longer kinetics than the phosphorylation cascade of cGAS-STING signaling. It will be interesting to know if there are anti-viral advantages to delayed kinetics, or if this simply reflects the signaling process.
  • It is intriguing that the SIDSP operates through critical components of fundamental cell biological pathways – DNA-PK (DNA-repair) and HSPA8 (essential chaperone activity). This is in contrast to cGAS and STING, which are generally described as non-essential and without well-defined roles outside immune regulation. One might imagine, then, that viral antagonism of the SIDSP will induce distinct cell stress phenotypes through loss of critical cell biological functions that may serve as signals to target an infected cell for destruction – a “backup plan” within the same pathway. As a specific example of this, does ICP0 antagonism (the non-oncogenic viral antagonist described) cause sufficient cell stress changes to render the infected cell targetable by the immune system? That is, does a cell with viral antagonism of DNA-PK look, for example, “transformed” enough to be killed through immunosurveillance mechanisms?

 

doi: https://doi.org/10.1242/prelights.10278

Read preprint (1 votes)

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the immunology category:

Leukocytes use endothelial membrane tunnels to extravasate the vasculature

Werner J. van der Meer, Abraham C.I. van Steen, Eike Mahlandt, et al.

Selected by 08 December 2024

Felipe Del Valle Batalla

Cell Biology

Alzheimer’s Disease Patient Brain Extracts Induce Multiple Pathologies in Vascularized Neuroimmune Organoids for Disease Modeling and Drug Discovery

Yanru Ji, Xiaoling Chen, Meek Connor Joseph, et al.

Selected by 07 November 2024

Manuel Lessi

Neuroscience

Global coordination of protrusive forces in migrating immune cells

Patricia Reis-Rodrigues, Nikola Canigova, Mario J. Avellaneda, et al.

Selected by 10 October 2024

yohalie kalukula

Biophysics

Also in the microbiology category:

Green synthesized silver nanoparticles from Moringa: Potential for preventative treatment of SARS-CoV-2 contaminated water

Adebayo J. Bello, Omorilewa B. Ebunoluwa, Rukayat O. Ayorinde, et al.

Selected by 14 November 2024

Safieh Shah, Benjamin Dominik Maier

Epidemiology

Intracellular diffusion in the cytoplasm increases with cell size in fission yeast

Catherine Tan, Michael C. Lanz, Matthew Swaffer, et al.

Selected by 18 October 2024

Leeba Ann Chacko, Sameer Thukral

Cell Biology

Significantly reduced, but balanced, rates of mitochondrial fission and fusion are sufficient to maintain the integrity of yeast mitochondrial DNA

Brett T. Wisniewski, Laura L. Lackner

Selected by 30 August 2024

Leeba Ann Chacko

Cell Biology

preLists in the immunology category:

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.

 



List by Alex Eve

Autophagy

Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.

 



List by Sandra Malmgren Hill

Antimicrobials: Discovery, clinical use, and development of resistance

Preprints that describe the discovery of new antimicrobials and any improvements made regarding their clinical use. Includes preprints that detail the factors affecting antimicrobial selection and the development of antimicrobial resistance.

 



List by Zhang-He Goh

Zebrafish immunology

A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.

 



List by Shikha Nayar
Close