Tumors Exploit Dedicated Intracellular Vesicles to Program T cell Responses
Posted on: 7 October 2019
Preprint posted on 4 July 2019
Dendritic cells bring enough to share: cell-cell transfer of tumor antigens in lymph nodes.
Selected by Tim FessendenCategories: cancer biology, immunology
Context
Efficient immune responses to diseased tissues require that the sentinels of the adaptive immune system constantly sample their target tissues. These sentinels – most importantly dendritic cells – transport material they encounter to lymph nodes, where they can activate T cells against specific pathogens or tumor cells. Immunologists have long had the tools to analyze the final state of this process – called cross-presentation – by assessing T cell activation. Similarly, our knowledge of dendritic cell subsets and their corresponding behaviors has sharpened over the past few years. What remains somewhat murky is the set of steps between these two: how do dendritic cells ensure that proteins from the diseased tissue are transported and efficiently cross-presented to T cells? A diverse population of dendritic cells manages this, but the precise mechanisms connecting each step in this complex cascade are unclear. Here, Max Krummel’s lab set out to examine how dendritic cells traffic antigens from tumors to lymph nodes.
Data
In order to follow cell debris derived from tumor cells as it is ingested and transported by dendritic cells, the authors make use of a fluorescent protein, ZsGreen, which remains stable at low pH. From mice that bear ZsGreen-expressing tumor cells, the authors use flow cytometry to analyze all immune cells that retain fluorescence from ZsGreen. With this assay they find that all phagocytic cells ingest at least some tumor cell debris. As dendritic cells specialize in transporting cell debris from tumors to lymph nodes, the authors analyze lymph nodes and indeed find cells containing intracellular puncta of ZsGreen. However, when they compare dendritic cells from the tumor vs from the lymph node, they note that lymph nodes exhibit relatively more ZsGreen+ cells that are however of lower fluorescence intensity. This observation motivates the foundational hypothesis of this work: that a few dendritic cells ingest a lot of cell debris in the tumor, which they then distribute among many dendritic cells within the lymph node. Their operating metaphor is the game of mancala in which game pieces are distributed equally among a set of holes, recalled dimly by this reader from his childhood.
To test this hypothesis, the authors isolate ZsGreen+ dendritic cells from a tumor-bearing mouse and coculture these ex vivo with dendritic cells from a naïve mouse. This assay clearly demonstrates that tumor-derived material is spread to the naïve dendritic cells, in a process that requires direct contact between cells. Live imaging of dendritic cells confirms that intracellular vesicles containing ZsGreen are transferred between apposed dendritic cells in vivo and ex vivo. Most interestingly, they find this sharing is most efficient from stimulatory dendritic cells previously associated with a robust anti-tumor immune response. This observation associates antigen sharing with a dendritic cell subset whose activities are required for a productive anti-tumor immune response.
What about the kinetics of this transfer of tumor cell material? The authors use a tumor cell line in which they can turn on ZsGreen expression using tamoxifen. This enables a pulse/chase experimental setup, and demonstrates that a migratory subset of dendritic cells takes up the tumor cell material first, and then transfers this material to nonmigratory dendritic cells residing in the lymph node. Finally the authors correlate this cell-cell transfer with cross-presentation and activation of T cells in the lymph node or ex vivo.
Implications
The authors report observations that redefine the capabilities of dendritic cells as transporters and presenters of antigens derived from tumors. Some hints at a unique promiscuity of dendritic cells exist already, for example from evidence that they can exchange membrane with nonimmune cells and thereby take up exogenous MHC-I receptors already bearing antigen[1]. However, the present work marks an important and provocative conceptual advance for the logic of antigen cross-presentation, and opens new avenues to investigate dendritic cells as not only capturing and transporting but also disseminating antigens from target tissues.
This work does not furnish details on the nature of the cell-cell contacts through which antigen-bearing vesicles might pass, nor on the trafficking of vesicles themselves. Readers must await future studies to examine these contacts and the frequency of such antigen sharing. Overall the present data suggest that as they survey and integrate cell debris to present to T cells, dendritic cells do not respect boundaries between cells but share their contents liberally to ensure an optimal immune response.
1. Wakim, L.M. and M.J. Bevan, Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature, 2011. 471(7340): p. 629-632.
doi: https://doi.org/10.1242/prelights.14382
Read preprintSign up to customise the site to your preferences and to receive alerts
Register hereAlso in the cancer biology category:
Integrin conformation-dependent neutrophil slowing obstructs the capillaries of the pre-metastatic lung in a model of breast cancer
Simon Cleary
Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects
Teodora Piskova
Spatial transcriptomics elucidates medulla niche supporting germinal center response in myasthenia gravis thymoma
Jessica Chevallier
Also in the immunology category:
Alzheimer’s Disease Patient Brain Extracts Induce Multiple Pathologies in Vascularized Neuroimmune Organoids for Disease Modeling and Drug Discovery
Manuel Lessi
Global coordination of protrusive forces in migrating immune cells
yohalie kalukula
Integrin conformation-dependent neutrophil slowing obstructs the capillaries of the pre-metastatic lung in a model of breast cancer
Simon Cleary
preListscancer biology category:
in theBSCB-Biochemical Society 2024 Cell Migration meeting
This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.
List by | Reinier Prosee |
CSHL 87th Symposium: Stem Cells
Preprints mentioned by speakers at the #CSHLsymp23
List by | Alex Eve |
Journal of Cell Science meeting ‘Imaging Cell Dynamics’
This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.
List by | Helen Zenner |
CellBio 2022 – An ASCB/EMBO Meeting
This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.
List by | Nadja Hümpfer et al. |
Fibroblasts
The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!
List by | Osvaldo Contreras |
Single Cell Biology 2020
A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.
List by | Alex Eve |
ASCB EMBO Annual Meeting 2019
A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)
List by | Madhuja Samaddar et al. |
Lung Disease and Regeneration
This preprint list compiles highlights from the field of lung biology.
List by | Rob Hynds |
Anticancer agents: Discovery and clinical use
Preprints that describe the discovery of anticancer agents and their clinical use. Includes both small molecules and macromolecules like biologics.
List by | Zhang-He Goh |
Biophysical Society Annual Meeting 2019
Few of the preprints that were discussed in the recent BPS annual meeting at Baltimore, USA
List by | Joseph Jose Thottacherry |
Also in the immunology category:
Journal of Cell Science meeting ‘Imaging Cell Dynamics’
This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.
List by | Helen Zenner |
Fibroblasts
The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!
List by | Osvaldo Contreras |
Single Cell Biology 2020
A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.
List by | Alex Eve |
Autophagy
Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.
List by | Sandra Malmgren Hill |
Antimicrobials: Discovery, clinical use, and development of resistance
Preprints that describe the discovery of new antimicrobials and any improvements made regarding their clinical use. Includes preprints that detail the factors affecting antimicrobial selection and the development of antimicrobial resistance.
List by | Zhang-He Goh |
Zebrafish immunology
A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.
List by | Shikha Nayar |