Close

Discovering the drivers of clonal hematopoiesis

Oriol Pich, Iker Reyes-Salazar, Abel Gonzalez-Perez, Nuria Lopez-Bigas

Posted on: 23 November 2020

Preprint posted on 23 October 2020

Article now published in Nature Communications at http://dx.doi.org/10.1038/s41467-022-31878-0

Repurposing tumour-blood samples to study Clonal Hematopoiesis

Selected by Irepan Salvador-Martinez

INTRODUCTION

Blood cells are generated throughout the life of every person. The process of producing blood cells (i.e. hematopoiesis) starts in the bone marrow, where stem cells divide to give rise to hematopoietic stem cells. Every person has a limited amount of hematopoietic stem cells (HSCs) that, as any other cell in our body, accumulate random mutations with time. Most of these mutations are expected to be neutral, but in some cases they confer an advantage to the HSC progenitors, so that their clonal progeny is over-represented in the total population of blood cells.

This phenomenon is called clonal hematopoiesis (CH) and can be identified by sequencing the DNA of blood cells: if a relatively large proportion of blood cells have a specific cell mutation, these are assumed to be a clonal population derived from a single HSC progenitor. Although this seems to be a normal phenomenon related with age, it has been also associated with risk of hematological cancer and death [1].

Recurrent mutations in specific genes have been found in CH suggesting these might be driver mutations, i.e. they provide a selective advantage to the cells leading to clonal expansion. A complete characterisation of gene specific mutations that might drive CH would be useful to investigate the mechanisms that lead to CH in the first place. Pich et al. tackle this problem by identifying signals of positive selection in blood somatic mutations, similar to cancer research studies.

About the preprint

For identifying positive selection in blood somatic mutations, the authors employed a clever approach, repurposing paired blood-tumour samples of more than 12,000 donors, divided in primary (N=~ 8,000; whole-exome level) and metastatic (N=~4,000; whole-genome level) cohorts.
These datasets were originally used to analyse mutations in the DNA sequence of the tumour sample, using the blood sample as control (variant calling). In this study, they analysed the mutations in the blood cells, using the tumour sample as control (reverse variant calling).

On the many genome somatic mutations obtained by reverse calling in both cohorts, they applied the IntOGen bioinformatic pipeline, which analyses the mutation data with seven different driver discovery algorithms combining the results to identify signals of positive selection [2]. Signals of positive selection can be: unexpected high recurrence of mutations; unexpected clustering of mutations in certain regions of the gene; or exceptionally high functional impact of the observed mutations.

After the IntOGen pipeline the authors filtered out few genes deemed as possible artifacts to reduce the probability of having false positives and kept only genes with previous evidence of being associated with CH, myeloid malignancies, or tumorigenesis in general, leading to 26 and 23 driver candidate genes in the metastasis and the primary cohorts, respectively (Fig 1).

Figure 1 (a) Summary of the discovery analysis applied to blood somatic mutations detected across the primary and metastasis cohorts. The somatic mutations identified across all donors of a cohort were analysed with the IntOGen pipeline to identify different signals of positive selection. (b) CH driver genes discovered across the primary and metastasis cohorts. Genes known to be involved in CH, myeloid malignancies or tumorigenesis in general are labeled. (from Figure 2 in the preprint made available under a CC-BY-NC-ND 4.0 license).

 

Importantly, most genes already associated with CH were recovered, as well as previously found associations such as, CH being positively influenced by age and by the exposure to cytotoxic treatments. Interestingly, although a set of CH genes common to both cohorts was found, many genes were specific to each cohort. The authors point out that this might be due to differences in treatments (e.g. chemoterapy) ethnicity or lifestyle exposures between the donors of both cohorts. Mutations in some CH-related genes are indeed known to provide an advantage to hematopoietic cells under exposure to certain cytotoxic treatments.

The authors then enriched these datasets with a “targeted-cohort”, consisting of N=~24,000 paired blood-tumour samples where a subset of all protein coding genes (N=468) have been sequenced (mostly genes involved in tumour development). Interestingly, they showed that only 44 genes show positive selection signatures. Other genes appeared mutated but didn’t show selection signatures, suggesting these are just passenger mutations and do not drive CH.

This study shows the utility of repurposing massive datasets of paired blood-tissue samples for the study of CH and represents a step towards a targeted sequencing panel of CH drivers that could be widely used for screening and discovery of early stages of CH in patients.

Questions to the authors

  • In some types of cancers, studies have shown some mutations seem to occur as a recurrent series of events. Do you think this could also be the case for CH driver genes?
  • Is there any evidence for differences in CH drivers for different human populations?

References

[1] Genovese G, Kähler AK, Handsaker RE, et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N Engl J Med. 2014;371(26):2477-2487. doi:10.1056/nejmoa1409405
[2] Martínez-Jiménez F, Muiños F, Sentís I, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020;20(10):555-572. doi:10.1038/s41568-020-0290-x

 

doi: https://doi.org/10.1242/prelights.25824

Read preprint (No Ratings Yet)

Author's response

Nuria Lopez-Bigas and Abel Gonzalez-Perez shared

Thanks very much for highlighting our manuscript and for the clear summary of our work.

• In some types of cancers, studies have shown some mutations seem to occur as a recurrent series of events. Do you think this could also be the case for CH driver genes?

Indeed in some cases cancer evolution has been shown to occur through an ordered series of events. This was observed, for instance, many years ago in colorectal cancer by Bert Vogelstein and colleagues (mutations in APC, KRAS, TP53). And it has also been shown that in the case of some hematological malignancies the order in which mutations occur has a profound impact on disease evolution.

In the case of clonal hematopoiesis we have seen that in most of the 12.000 cases we have analyzed only one mutation affecting a CH gene is identified. But in 18% of the cases we identify more than one and we can observe some preferences of co-occurring mutations (Fig. 4e). But more data is needed to discern whether a series of mutations cooperate in the development of CH and this is modulated by the order in which they occur.

• Is there any evidence for differences in CH drivers for different human populations?

That is also a very interesting question. There are differences in the CH drivers depending on exposures to different agents and conditions. For example, as we explore in the paper, across patients who have received certain chemotherapies there is an enrichment of PPM1D mutations. Other associations between mutations affecting specific CH drivers and lifestyle exposures have also been reported (e.g. smoking with preference ASXL1). There are also germline variants associated with different risks to develop CH. In that respect it is likely that there are differences in CH drivers for different human populations, due to differences in genetic background. In addition, differences in exposures related to varying lifestyles across populations may also modulate the selective advantage provided by particular mutations affecting HSCs.

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the bioinformatics category:

Deep learning-based predictions of gene perturbation effects do not yet outperform simple linear methods

Constantin Ahlmann-Eltze, Wolfgang Huber, Simon Anders

Selected by 11 November 2024

Benjamin Dominik Maier

Bioinformatics

Functional Diversity of Memory CD8 T Cells is Spatiotemporally Imprinted

Miguel Reina-Campos, Alexander Monell, Amir Ferry, et al.

Selected by 22 August 2024

Marina Schernthanner

Bioinformatics

Enhancer-driven cell type comparison reveals similarities between the mammalian and bird pallium

Nikolai Hecker , Niklas Kempynck , David Mauduit, et al.

Selected by 02 July 2024

Rodrigo Senovilla-Ganzo

Bioinformatics

Also in the cancer biology category:

Integrin conformation-dependent neutrophil slowing obstructs the capillaries of the pre-metastatic lung in a model of breast cancer

Frédéric Fercoq, Gemma S. Cairns, Marco De Donatis, et al.

Selected by 07 October 2024

Simon Cleary

Cancer Biology

Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects

Ritobrata Ghose, Fabio Pezzano, Savvas Kourtis, et al.

Selected by 16 May 2024

Teodora Piskova

Cell Biology

Spatial transcriptomics elucidates medulla niche supporting germinal center response in myasthenia gravis thymoma

Yoshiaki Yasumizu, Makoto Kinoshita, Martin Jinye Zhang, et al.

Selected by 27 March 2024

Jessica Chevallier

Immunology

Also in the genomics category:

A fine kinetic balance of interactions directs transcription factor hubs to genes

Apratim Mukherjee, Samantha Fallacaro, Puttachai Ratchasanmuang, et al.

Selected by 23 July 2024

Deevitha Balasubramanian

Genomics

Enhancer-driven cell type comparison reveals similarities between the mammalian and bird pallium

Nikolai Hecker , Niklas Kempynck , David Mauduit, et al.

Selected by 02 July 2024

Rodrigo Senovilla-Ganzo

Bioinformatics

Modular control of time and space during vertebrate axis segmentation

Ali Seleit, Ian Brettell, Tomas Fitzgerald, et al.

AND

Natural genetic variation quantitatively regulates heart rate and dimension

Jakob Gierten, Bettina Welz, Tomas Fitzgerald, et al.

Selected by 24 June 2024

Girish Kale, Jennifer Ann Black

Developmental Biology

preLists in the bioinformatics category:

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Alumni picks – preLights 5th Birthday

This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.

 



List by Sergio Menchero et al.

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.

 



List by Alex Eve

Antimicrobials: Discovery, clinical use, and development of resistance

Preprints that describe the discovery of new antimicrobials and any improvements made regarding their clinical use. Includes preprints that detail the factors affecting antimicrobial selection and the development of antimicrobial resistance.

 



List by Zhang-He Goh

Also in the cancer biology category:

BSCB-Biochemical Society 2024 Cell Migration meeting

This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.

 



List by Reinier Prosee

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.

 



List by Nadja Hümpfer et al.

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.

 



List by Alex Eve

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.

 



List by Rob Hynds

Anticancer agents: Discovery and clinical use

Preprints that describe the discovery of anticancer agents and their clinical use. Includes both small molecules and macromolecules like biologics.

 



List by Zhang-He Goh

Biophysical Society Annual Meeting 2019

Few of the preprints that were discussed in the recent BPS annual meeting at Baltimore, USA

 



List by Joseph Jose Thottacherry

Also in the genomics category:

BSCB-Biochemical Society 2024 Cell Migration meeting

This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.

 



List by Reinier Prosee

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Semmelweis Symposium 2022: 40th anniversary of international medical education at Semmelweis University

This preList contains preprints discussed during the 'Semmelweis Symposium 2022' (7-9 November), organised around the 40th anniversary of international medical education at Semmelweis University covering a wide range of topics.

 



List by Nándor Lipták

20th “Genetics Workshops in Hungary”, Szeged (25th, September)

In this annual conference, Hungarian geneticists, biochemists and biotechnologists presented their works. Link: http://group.szbk.u-szeged.hu/minikonf/archive/prg2021.pdf

 



List by Nándor Lipták

EMBL Conference: From functional genomics to systems biology

Preprints presented at the virtual EMBL conference "from functional genomics and systems biology", 16-19 November 2020

 



List by Jesus Victorino

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20

 



List by Maiko Kitaoka et al.

Zebrafish immunology

A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.

 



List by Shikha Nayar
Close