Ecological basis and genetic architecture of crypsis polymorphism in the desert clicker grasshopper (Ligurotettix coquilletti)
Posted on: 27 May 2021 , updated on: 1 June 2021
Preprint posted on 30 April 2021
Article now published in Evolution at http://dx.doi.org/10.1111/evo.14321
Hiding in plain sight: Crypsis polymorphism in desert clicker grasshoppers is maintained by balancing selection driven by predation pressure, and genetically regulated by structural variants associated with colour morphs
Selected by Riddhi DeshmukhCategories: ecology, evolutionary biology, genetics, zoology
Background:
Colour polymorphisms are fascinating adaptations that help organisms avoid predation (1–3), gain access to mates (4), and thermoregulate (5,6). Cryptic colouration or camouflage can help organisms blend into their backgrounds. Further, some species exhibit discrete camouflaging morphs in a crypsis polymorphism. Complex adaptations such as colour polymorphisms are often maintained by balancing selection through various processes including negative frequency dependence (7), where rarer forms are advantageous; and sexual antagonism (8), where a trait differentially benefits the two sexes. The individual morph phenotypes can be inherited across generations as a single (9) or multi-locus (10) trait. At the genetic level, these could be governed by individual SNPs (11), differential cis-regulation of certain genes (12), transposable element insertion (13) and structural variation such as large-scale inversions (14) and indels (15). These mechanisms can give rise to alternate alleles that regulate the various morphs.
Grasshoppers and other Orthoperans show a notable degree of colour polymorphism, particularly crypsis. The desert clicker (Ligurotettix coquilletti), found across the arid region of Sonoran, Mojave, and Peninsular Deserts in Western USA, shows two cryptic morphs in both sexes. These comprise a uniform morph that has more or less homogeneous patterning, and a banded morph that shows contrasting light and dark bands across the body axis. These grasshoppers spend most of their lifetimes in creosote bushes, however, adult females oviposit on the desert floor, which makes them susceptible to attack from predators. In the preprint, the authors collected desert clickers from 20 sites across the species range, and estimated morph frequencies and their dependence on predation environment (bushes vs desert substrate). They identified dominance relationships between morphs and identified the processes that maintain these morphs across different populations. They also explored the genetic bases of this polymorphism with a novel approach using RADseq to detect structural variants associated with each morph.
Key findings:
- The authors found that both colour morphs of grasshoppers occurred at intermediate frequencies across different populations. However, these frequencies were unrelated to variation in the host plant stems where they spent most of their lives. Instead, the desert substrate, where females oviposit their eggs, explained most of the variation in morph frequencies. Therefore, predation pressure on ovipositing females was a better indicator of the geographical variation in crypsis polymorphism in desert clicker.
- The existence of colour morphs at intermediate frequencies across populations points towards balancing selection as a maintenance mechanism. This could be acting in two possible ways; the frequency of banded morphs and their resemblance to the substrate indicates the presence of negative frequency dependent selection acting on the morphs. However, only females were exposed to predation on the ground during oviposition on the desert floor, suggests the presence of sexually antagonistic selection as well.
- The authors used reduced representation RADcap sequencing with bait capture to detect structural variants in the genome associated with the cryptic morphs. They designed sequence capture baits targeting 40,000 loci, and tailored the analysis of the data to grasshopper genomes that have an XX/XO sex-determination mechanism. This novel method provided a cost-effective way to sequence large grasshopper genomes (~6-16 Gb) in the absence of reliable genome assemblies and re-sequencing data.
- The authors identified a putative indel that was associated with the colour morphs. The insertion was associated with the banded morph, suggesting that this genomic region may contain loci that regulate patterning and colouration observed in this morph. This result is similar to that found in Timema stick insects, where a 5Mb deletion in the genome disrupts continuous colour variation in this group and results in a discrete polymorphism with green and brown morphs.
- The authors found that the dominance relationships between the banded and uniform morphs differed between populations. While the banded form was dominant over much of the range, in a few isolated populations, it was recessive and weakly penetrant. The authors speculate that the banded phenotype may have been ancestrally recessive, but may have subsequently evolved dominance and higher penetrance in certain parts of the species range. This result provides insights into the long-debated question of whether dominance evolves.
Why is this work important?
- The authors developed a cost-effective approach to sequence large genomes with reduced representation RADseq and used it to ask questions about the genetic bases of adaptations in this system. This method can be applies to any species with discrete morphs. It is an excellent alternative, especially for non-model systems, when genomic data is unavailable, and is a nifty tool to initiate studies on genetic bases of polymorphisms or alternative reproductive strategies.
- The authors provide preliminary evidence for the evolution of dominance between morphs in this polymorphic species. Whether dominance arises with individual mutations, or evolves consequentially, has been a fundamental question in an enduring debate in the field. Some aspects of this question can be answered by experimental evolution studies, however, they may not reflect what happens in nature. Studies on wild populations in their native habitat better represent the standing genetic variation that could be used to trace the evolutionary history of morphs.
Future directions:
- Identifying and characterizing the genomic location of the putative indel, the genes that regulate this crypsis polymorphism, and exploring their evolutionary origin. A second Ligurotettix species also shows colour polymorphism resembling the desert clicker. Do these species share a common genetic bases and mechanisms of maintenance of the polymorphism?
- Characterizing the evolution of dominance between morphs. Could allelic turnover have resulted in the evolution of dominance in the banded morph? Or did dominance evolve as a pleiotropic outcome of the indel polymorphism and the selection it imposed on other loci?
- How do the inheritance patterns of colour morphs vary when morphs from two populations with different dominance relationships interbreed?
- How does the efficiency and accuracy of the RADseq and bait capture approach compare to conventional methods used for such analyses?
- What modes of balancing selection are involved in maintaining morph frequencies? Is it possible to determine the contribution from negative frequency dependent selection versus sexually antagonistic selection in maintenance of intermediate morph frequencies across populations and dominance relationships?
References:
- Symula, R., Schulte, R. & Summers, K. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. R. Soc. London. Ser. B Biol. Sci. 268, 2415–2421 (2001).
- Bond, A. B. The evolution of color polymorphism: crypticity, searching images, and apostatic selection. Rev. Ecol. Evol. Syst. 38, 489–514 (2007).
- Quicke, D. L. J. Mimicry, Crypsis, Masquerade and Other Adaptive Resemblances. (Wiley Blackwell, 2017).
- Chamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E. & Kronforst, M. R. Polymorphic butterfly reveals the missing link in ecological Science (80-. ). 326, 847–850 (2009).
- Williams, The distribution of bumblebee colour patterns worldwide: Possible significance for thermoregulation, crypsis, and warning mimicry. Biol. J. Linn. Soc. 92, 97–118 (2007).
- Gautam, S. & Kunte, K. Adaptive plasticity in wing melanisation of a montane butterfly across a Himalayan elevational gradient. Entomol. een.12911 (2020) doi:10.1111/een.12911.
- Takahashi, Y., Yoshimura, J., Morita, S. & Watanabe, M. Negative frequency-dependent selection in female color polymorphism of a Evolution (N. Y). 64, 3620–3628 (2010).
- Kunte, Female-limited mimetic polymorphism: A review of theories and a critique of sexual selection as balancing selection. Anim. Behav. 78, 1029–1036 (2009).
- Clarke, A. & Sheppard, P. M. The genetics of the mimetic butterfly Papilio polytes L. Philos. Trans. R. Soc. B 263, 431–458 (1972).
- Kronforst, M. R. & Papa, R. The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics 200, 1–19 (2015).
- Cooke, T. F. et al. Genetic mapping and biochemical basis of yellow feather pigmentation in budgerigars. Cell 171, 427–439.e21 (2017).
- Gautier, M. et al. The genomic basis of color pattern polymorphism in the Harlequin Ladybird. Curr. Biol. 28, 3296–3302.e7 (2018).
- van’t Hof, A. E. et al. The industrial melanism mutation in British peppered moths is a transposable element. Nature 534, 102–105 (2016).
- Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–206 (2011).
- Villoutreix, R. et al. Large-scale mutation in the evolution of a gene complex for cryptic coloration. Science (80-. ). 369, 460–466 (2020).
doi: https://doi.org/10.1242/prelights.29111
Read preprintSign up to customise the site to your preferences and to receive alerts
Register hereAlso in the ecology category:
Green synthesized silver nanoparticles from Moringa: Potential for preventative treatment of SARS-CoV-2 contaminated water
Safieh Shah, Benjamin Dominik Maier
Precision Farming in Aquaculture: Use of a non-invasive, AI-powered real-time automated behavioural monitoring approach to predict gill health and improve welfare in Atlantic salmon (Salmo salar) aquaculture farms
Jasmine Talevi
Gestational exposure to high heat-humidity conditions impairs mouse embryonic development
Girish Kale, preLights peer support
Also in the evolutionary biology category:
Geometric analysis of airway trees shows that lung anatomy evolved to enable explosive ventilation and prevent barotrauma in cetaceans
Sarah Young-Veenstra
Enhancer-driven cell type comparison reveals similarities between the mammalian and bird pallium
Rodrigo Senovilla-Ganzo
Modular control of time and space during vertebrate axis segmentation
AND
Natural genetic variation quantitatively regulates heart rate and dimension
Girish Kale, Jennifer Ann Black
Also in the genetics category:
Intracellular diffusion in the cytoplasm increases with cell size in fission yeast
Leeba Ann Chacko, Sameer Thukral
HIF1A contributes to the survival of aneuploid and mosaic pre-implantation embryos
Anchel De Jaime Soguero
Significantly reduced, but balanced, rates of mitochondrial fission and fusion are sufficient to maintain the integrity of yeast mitochondrial DNA
Leeba Ann Chacko
Also in the zoology category:
Geometric analysis of airway trees shows that lung anatomy evolved to enable explosive ventilation and prevent barotrauma in cetaceans
Sarah Young-Veenstra
Blue appendages and temperature acclimation increase survival during acute heat stress in the upside-down jellyfish, Cassiopea xamachana
Maitri Manjunath
How the liver contributes to stomach warming in the endothermic white shark Carcharodon carcharias
Sarah Young-Veenstra
preListsecology category:
in thepreLights peer support – preprints of interest
This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.
List by | preLights peer support |
EMBO | EMBL Symposium: The organism and its environment
This preList contains preprints discussed during the 'EMBO | EMBL Symposium: The organism and its environment', organised at EMBL Heidelberg, Germany (May 2023).
List by | Girish Kale |
Bats
A list of preprints dealing with the ecology, evolution and behavior of bats
List by | Baheerathan Murugavel |
Also in the evolutionary biology category:
‘In preprints’ from Development 2022-2023
A list of the preprints featured in Development's 'In preprints' articles between 2022-2023
List by | Alex Eve, Katherine Brown |
preLights peer support – preprints of interest
This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.
List by | preLights peer support |
EMBO | EMBL Symposium: The organism and its environment
This preList contains preprints discussed during the 'EMBO | EMBL Symposium: The organism and its environment', organised at EMBL Heidelberg, Germany (May 2023).
List by | Girish Kale |
9th International Symposium on the Biology of Vertebrate Sex Determination
This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.
List by | Martin Estermann |
EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)
A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.
List by | Alex Eve |
Planar Cell Polarity – PCP
This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.
List by | Ana Dorrego-Rivas |
TAGC 2020
Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20
List by | Maiko Kitaoka et al. |
ECFG15 – Fungal biology
Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome
List by | Hiral Shah |
COVID-19 / SARS-CoV-2 preprints
List of important preprints dealing with the ongoing coronavirus outbreak. See http://covidpreprints.com for additional resources and timeline, and https://connect.biorxiv.org/relate/content/181 for full list of bioRxiv and medRxiv preprints on this topic
List by | Dey Lab, Zhang-He Goh |
1
SDB 78th Annual Meeting 2019
A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.
List by | Alex Eve |
Pattern formation during development
The aim of this preList is to integrate results about the mechanisms that govern patterning during development, from genes implicated in the processes to theoritical models of pattern formation in nature.
List by | Alexa Sadier |
Also in the genetics category:
End-of-year preprints – the genetics & genomics edition
In this community-driven preList, a group of preLighters, with expertise in different areas of genetics and genomics have worked together to create this preprint reading list. Categories include: 1) genomics 2) bioinformatics 3) gene regulation 4) epigenetics
List by | Chee Kiang Ewe et al. |
BSDB/GenSoc Spring Meeting 2024
A list of preprints highlighted at the British Society for Developmental Biology and Genetics Society joint Spring meeting 2024 at Warwick, UK.
List by | Joyce Yu, Katherine Brown |
BSCB-Biochemical Society 2024 Cell Migration meeting
This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.
List by | Reinier Prosee |
9th International Symposium on the Biology of Vertebrate Sex Determination
This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.
List by | Martin Estermann |
Alumni picks – preLights 5th Birthday
This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.
List by | Sergio Menchero et al. |
Semmelweis Symposium 2022: 40th anniversary of international medical education at Semmelweis University
This preList contains preprints discussed during the 'Semmelweis Symposium 2022' (7-9 November), organised around the 40th anniversary of international medical education at Semmelweis University covering a wide range of topics.
List by | Nándor Lipták |
20th “Genetics Workshops in Hungary”, Szeged (25th, September)
In this annual conference, Hungarian geneticists, biochemists and biotechnologists presented their works. Link: http://group.szbk.u-szeged.hu/minikonf/archive/prg2021.pdf
List by | Nándor Lipták |
2nd Conference of the Visegrád Group Society for Developmental Biology
Preprints from the 2nd Conference of the Visegrád Group Society for Developmental Biology (2-5 September, 2021, Szeged, Hungary)
List by | Nándor Lipták |
EMBL Conference: From functional genomics to systems biology
Preprints presented at the virtual EMBL conference "from functional genomics and systems biology", 16-19 November 2020
List by | Jesus Victorino |
TAGC 2020
Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20
List by | Maiko Kitaoka et al. |
ECFG15 – Fungal biology
Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome
List by | Hiral Shah |
Autophagy
Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.
List by | Sandra Malmgren Hill |
Zebrafish immunology
A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.
List by | Shikha Nayar |