Close

In situ structure determination of virus capsids imaged within cell nuclei by correlative light and cryo-electron tomography

Swetha Vijayakrishnan, Marion McElwee, Colin Loney, Frazer Rixon, David Bhella

Posted on: 3 May 2020 , updated on: 25 May 2020

Preprint posted on 6 February 2020

Article now published in Scientific Reports at http://dx.doi.org/10.1038/s41598-020-74104-x

A close, really close glimpse into the world of viruses within the host cell using innovative Cryo-EM

Selected by Debakshi Mullick

Background

Cryogenic electron microscopy (Cryo-EM) has recently emerged as a reliable method to determine high-resolution biomolecular structures of a range of samples, from proteins, nucleic acids, and viruses to whole cells. Unlike in a conventional transmission electron microscope (TEM), the microscope and the samples are maintained at cryogenic temperatures (~-190°C). The samples are prepared by plunge-freezing them in a bath of liquid nitrogen-cooled ethane on a TEM grid. The water freezes rapidly to a disordered glassy state (vitrification) [1], without forming crystalline ice that would both cause damage and diffract strongly on encountering the electron beam, thereby obscuring the sample.

Cryo-EM is often a preferred choice where dehydration, harsh fixatives, and metal contrasting agents alter the native structures and give rise to undesirable artefacts e.g. determination of high-resolution 3D structures of purified proteins. For larger samples like viruses (or for cellular ultrastructure), cryo-electron tomography (cryo-ET) is preferred where a series of 2D TEM projections are obtained by tilting the sample through ~120° and are computationally back-projected to obtain the 3D structure. The resulting tomograms can be used to build high-resolution structures in a method called sub-tomogram averaging.

The current work focuses on the pathogenic herpes simplex virus-1 (HSV-1), which is a causative agent of oral herpes or ‘cold sores’. HSV-1 is a fairly large-sized virus (~1300 Å) that initially replicates within host nuclei to give rise to newly-formed virions whose capsids now enclose the dsDNA genome of the virus [2]. In the cytoplasm, they are enclosed in a protein-rich layer (the tegument) that is made up of assemblies called capsid-associated tegument complex (CATC), which is composed of 3 main proteins viz pUL17, pUL25, and pUL36. Here, Vijayakrishnan et al. aimed to elucidate the infectious cycle of HSV-1 within the host cell using Correlative Light Electron Microscopy (CLEM) to identify foci of replicating virus in a confocal microscope, before cryo-ET of these regions. The authors successfully integrated several EM and analysis techniques to shed more light on the in situ infectious cycle of HSV-1.

Results

The authors used an RFP tagged HSV-1 to infect the host baby hamster kidney cells (BHK-21). Samples were prepared using the Tokuyasu method, in which the infected cells were fixed with aldehydes and embedded in gelatin before being frozen in liquid nitrogen [3]. Following this, sections of ~200 nm were cut using a cryo-microtome and collected on a holey TEM grid. These sections were observed under a confocal microscope to identify RFP expressing HSV-1 regions, before cryo-ET of these regions of interest (ROIs) (Fig 1; (i)). These grids were then re-vitrified by plunging in liquid ethane and low magnification TEM images were then overlaid on the fluorescence map (CLEM). Tomograms were obtained in regions that showed a good density of viruses.

The precise sub-cellular (nucleus or cytoplasm) recruitment location of pUL36 to CATC of the virus has been of a debate in the field. To lay this to rest, the authors have used a mutant strain of the virus- FRΔUL37 (null mutant for pUL37 tegument protein) to infect host cells. The pUL36 protein is vital for virion particles to bud off from the nucleus whereas the absence of pUL37 does not any adverse effect on nuclear egress. Unlike the wild-type strain, HSV-1 FRΔUL37 nucleocapsids are not directed to the trans-Golgi network and accumulate in the cytoplasm [4]. Cryo-ET was done at both cytoplasmic and nuclear locations where there was a large density of virion particles (Fig 1; (ii)).

Three kinds of capsids were observed from cryo-ET- empty (A), scaffold-protein containing (B), and DNA filled (C), whose structures were later determined from sub-tomogram averaging (Fig 1; (iii)). It is noteworthy to observe that both B and C capsids were seen in the nucleus but the cytoplasm contained mostly C-capsids suggesting that the virion was fully formed along with the CATC before nuclear egress. Structural analysis of the 3 types revealed that only C-capsid had similar CATC densities as seen in previous averaged data from purified HSV- 1 [2,5]. The calculated resolution obtained from this analysis was about 6.4nm (Fig 1; (iv)). The observed CATC densities on the C-capsid were further corroborated using a focused classification method that can further refine structures within an already averaged structure.

In summary, the data emerging from the analysis adequately points in the direction that pUL36 recruitment happens within the nucleus as almost all C-type nucleocapsids have CATC densities that are comparable to a fully mature virus. This is the first time that precise structures have been determined from viruses that are within the nucleus- the virus’s replication site.

Fig 1: Sub-tomogram averaged structure of HSV-1 from cryo-ET of host cells (i) Light microscopy and EM images overlaid to find regions of interest with wild type RFP expressing HSV-1 capsids (in red) inside the cell. (ii) Low magnification EM image from mutant HSV-1 samples. Cellular structures have been annotated for simplicity -nuclear membrane (green), other membranous and vacuolar structures (yellow), nuclear capsids (red with a black rectangle), and cytoplasmic capsids (blue with a black circle). These were also the regions chosen for cryo-ET. (iii) Capsid types- A (empty), B (scaffold-protein containing), and C (with DNA) obtained from sub-tomogram averaging. (iv)The CATC structures, when compared with structures from previous data, show that (a) C-type capsid is comparable to (b) data from purified HSV-1.

Comments and questions

See the author’s response section

Why I chose this article

I have an interest in cryo-EM of samples in their functional context i.e. within whole cells. This preprint effectively integrates several aspects of cryo-EM very innovatively. The work-flow is simple to follow and it is promising for those who want to study cellular and macromolecular ultrastructure in their near-native form. The methods do not entail the use of highly specialized instruments making it plausible for many labs to be able to adopt it straight away.

References

  1. Dubochet, J., Adrian, M., Chang, J., Homo, J., Lepault, J., McDowall, A., & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Quarterly Reviews of Biophysics, 21(2), 129-228. DOI: 10.1017/S0033583500004297. Cryo-electron microscopy of vitrified specimens. Rev. Biophys. 21, 129–228 (1988).
  2. Dai, & Zhou, Z. H. Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science (80-. ). 360, eaao7298 (2018).
  3. Tokuyasu, K. T. Immunochemistry on ultrathin frozen sections. J. 12, 381– 403 (1980).
  4. Pasdeloup, D. et al. Inner tegument protein pUL37 of herpes simplex virus type 1 is involved in directing capsids to the trans-Golgi network for envelopment. Gen. Virol. 91, 2145–2151 (2010).
  5. McElwee, M., Vijayakrishnan, S., Rixon, F. & Bhella, D. Structure of the herpes simplex virus portal-vertex. PLOS Biol. 16, e2006191 (2018).

Tags: host-pathogen interaction, method, pathogen

doi: https://doi.org/10.1242/prelights.19875

Read preprint (3 votes)

Author's response

Swetha Vijayakrishnan shared

Why was the RFP tagged HSV-1 not suitable enough for understanding the precise location of pUL36 recruitment?

The RFP tagged HSV used in this study is the wild type (WT) virus. It has been shown that both pUL36 and pUL37 (or at least part of them) are recruited to capsids in the nucleus prior to egress. Therefore, with WT capsids assembled in the nucleus, the density over the 5-fold vertices in our capsid structures would have included both pUL36 and pUL37. However, at the resolution (6 nm) at which we are, it would be extremely difficult to distinguish them. By using a mutant with one of them (pUL37) absent, we overcome this problem and rule out any ambiguity, confirming that the star-like density observed in our capsid structure is only contributed by pUL36.

Given you have low shrinkage artefacts, have you tried merging tomograms from serial sections to yield data from larger volumes?

This is an interesting idea. Our goal in this study was to determine 3D structures from re-vitrified sections via subtomogram averaging. For the purpose of this study, the volume of a single section (200 nm thick section) proved sufficient to obtain the 3D structure of capsids (diameter 125 nm). However, if larger structures (> 200 nm) were desired involving virus and host components, such as capsids in the process of membrane encapsidation or travelling along the ER and trans-Golgi network, merging tomograms from serial sections would prove useful providing a more complete view of these structures as well as the mechanism within the cell.

Would dual-axis tomography have any influence in achieving better-averaged structures from sub-tomogram averaging?

Yes, this is plausible. It is known that single-axis cryo tomography produces elongation along the Z-direction and loss of contrast in the X/Y-direction (for filamentous or extended structures). Dual-axis tomography has shown to efficiently correct the latter artefact. Moreover, using dual-axis provides better coverage and sampling of Fourier space, resulting in reduction of the missing wedge and angular tilt ranges needed during data collection. This increases the isotropic resolution and quality of the tomogram, and could potentially impact the final resolution of structures obtained by STA. However, as radiation damage is still a big problem, the overall low electron dose on the samples will have to be evenly spread over the dual tilt axes series. Currently there are no STA data based on dual axis tomography. Therefore, optimizing signal-to-noise, total dose, use of phase plates and data acquisition schemes for dual axis tomography using direct electron detectors to obtain high-resolution tomograms and structures by STA needs further investigation.

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the biophysics category:

ROCK2 inhibition has a dual role in reducing ECM remodelling and cell growth, while impairing migration and invasion

Daniel A. Reed, Anna E. Howell, Nadia Kuepper, et al.

Selected by 27 November 2025

Sharvari Pitke

Cancer Biology

Effects of transcranial photobiomodulation on peripheral biomarkers associated with oxidative stress and complex IV activity in the prefrontal cortex in rats subjected to chronic mild stress

Luciana Bortoluzzi, Rafael Colombo, Karoline Motta Pinto, et al.

Selected by 21 October 2025

Rickson Ribeiro, Marcus Oliveira

Neuroscience

Condensation of Sidekick at tricellular junctions organizes mechanical forces for cell-cell adhesion remodeling

Hiroyuki Uechi, Daxiao Sun, Yuki Saeki, et al.

Selected by 17 October 2025

Fatima Rafiq

Biophysics

Also in the microbiology category:

Citrobacter rodentium infection activates colonic lamina propria group 2 innate lymphoid cells

Rita Berkachy, Vishwas Mishra, Priyanka Biswas, et al.

Selected by 02 December 2025

André Luiz Amorim Costa, Marcus Oliveira

Immunology

Schistosoma haematobium DNA and Eggs in the Urine Sample of School-Age Children (SAC) in South-West Nigeria

Taiwo Mofadeke Jaiyeola, Folahanmi Tomiwa Akinsolu, Adesola Zaidat Musa, et al.

Selected by 24 November 2025

Hala Taha

Epidemiology

A major histocompatibility complex (MHC) class II molecule that binds the same viral pathogen peptide with both nonamer and decamer core sequences for presentation to T cells

Anastasia Goryanin, Atlanta G. Cook, Shahriar Behboudi, et al.

Selected by 05 November 2025

Mitchell Sarmie

Immunology

Also in the pathology category:

Schistosoma haematobium DNA and Eggs in the Urine Sample of School-Age Children (SAC) in South-West Nigeria

Taiwo Mofadeke Jaiyeola, Folahanmi Tomiwa Akinsolu, Adesola Zaidat Musa, et al.

Selected by 24 November 2025

Hala Taha

Epidemiology

FUS Mislocalization Rewires a Cortical Gene Network to Drive 2 Cognitive and Behavioral Impairment in ALS

Raphaelle CASSEL, Félicie LORENC, Aurélie BOMBARDIER, et al.

Selected by 14 July 2025

Taylor Stolberg

Neuroscience

Integrin conformation-dependent neutrophil slowing obstructs the capillaries of the pre-metastatic lung in a model of breast cancer

Frédéric Fercoq, Gemma S. Cairns, Marco De Donatis, et al.

Selected by 07 October 2024

Simon Cleary

Cancer Biology

preLists in the biophysics category:

October in preprints – DevBio & Stem cell biology

Each month, preLighters with expertise across developmental and stem cell biology nominate a few recent developmental and stem cell biology (and related) preprints they’re excited about and explain in a single paragraph why. Short, snappy picks from working scientists — a quick way to spot fresh ideas, bold methods and papers worth reading in full. These preprints can all be found in the October preprint list published on the Node.

 



List by Deevitha Balasubramanian et al.

October in preprints – Cell biology edition

Different preLighters, with expertise across cell biology, have worked together to create this preprint reading list for researchers with an interest in cell biology. This month, most picks fall under (1) Cell organelles and organisation, followed by (2) Mechanosignaling and mechanotransduction, (3) Cell cycle and division and (4) Cell migration

 



List by Matthew Davies et al.

March in preprints – the CellBio edition

A group of preLighters, with expertise in different areas of cell biology, have worked together to create this preprint reading lists for researchers with an interest in cell biology. This month, categories include: 1) cancer biology 2) cell migration 3) cell organelles and organisation 4) cell signalling and mechanosensing 5) genetics and genomics 6) other

 



List by Girish Kale et al.

Biologists @ 100 conference preList

This preList aims to capture all preprints being discussed at the Biologists @100 conference in Liverpool, UK, either as part of the poster sessions or the (flash/short/full-length) talks.

 



List by Reinier Prosee, Jonathan Townson

February in preprints – the CellBio edition

A group of preLighters, with expertise in different areas of cell biology, have worked together to create this preprint reading lists for researchers with an interest in cell biology. This month, categories include: 1) biochemistry and cell metabolism 2) cell organelles and organisation 3) cell signalling, migration and mechanosensing

 



List by Barbora Knotkova et al.

preLights peer support – preprints of interest

This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.

 



List by preLights peer support

66th Biophysical Society Annual Meeting, 2022

Preprints presented at the 66th BPS Annual Meeting, Feb 19 - 23, 2022 (The below list is not exhaustive and the preprints are listed in no particular order.)

 



List by Soni Mohapatra

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

Biophysical Society Meeting 2020

Some preprints presented at the Biophysical Society Meeting 2020 in San Diego, USA.

 



List by Tessa Sinnige

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

 



List by Dey Lab

Biomolecular NMR

Preprints related to the application and development of biomolecular NMR spectroscopy

 



List by Reid Alderson

Biophysical Society Annual Meeting 2019

Few of the preprints that were discussed in the recent BPS annual meeting at Baltimore, USA

 



List by Joseph Jose Thottacherry

Also in the pathology category:

October in preprints – DevBio & Stem cell biology

Each month, preLighters with expertise across developmental and stem cell biology nominate a few recent developmental and stem cell biology (and related) preprints they’re excited about and explain in a single paragraph why. Short, snappy picks from working scientists — a quick way to spot fresh ideas, bold methods and papers worth reading in full. These preprints can all be found in the October preprint list published on the Node.

 



List by Deevitha Balasubramanian et al.

October in preprints – Cell biology edition

Different preLighters, with expertise across cell biology, have worked together to create this preprint reading list for researchers with an interest in cell biology. This month, most picks fall under (1) Cell organelles and organisation, followed by (2) Mechanosignaling and mechanotransduction, (3) Cell cycle and division and (4) Cell migration

 



List by Matthew Davies et al.

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

ECFG15 – Fungal biology

Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome

 



List by Hiral Shah

COVID-19 / SARS-CoV-2 preprints

List of important preprints dealing with the ongoing coronavirus outbreak. See http://covidpreprints.com for additional resources and timeline, and https://connect.biorxiv.org/relate/content/181 for full list of bioRxiv and medRxiv preprints on this topic

 



List by Dey Lab, Zhang-He Goh

1

Cellular metabolism

A curated list of preprints related to cellular metabolism at Biorxiv by Pablo Ranea Robles from the Prelights community. Special interest on lipid metabolism, peroxisomes and mitochondria.

 



List by Pablo Ranea Robles