Close

LCM-seq reveals unique transcriptional adaption mechanisms of resistant neurons in spinal muscular atrophy

Susanne Nichterwitz, Helena Storvall, Jik Nijssen, Laura H Comley, Ilary Allodi, Mirjam van der Lee, Christoph Schweingruber, Qiaolin Deng, Rickard Sandberg, Eva Hedlund

Posted on: 12 September 2018 , updated on: 13 September 2018

Preprint posted on 27 June 2018

Article now published in Genome Research at http://dx.doi.org/10.1101/gr.265017.120

and

Axon-seq decodes the motor axon transcriptome and its modulation in response to ALS

Jik Nijssen, Julio Cesar Aguila Benitez, Rein Hoogstraaten, Nigel Kee, Eva Hedlund

Posted on: , updated on: 13 September 2018

Preprint posted on 11 July 2018

Article now published in Stem Cell Reports at http://dx.doi.org/10.1016/j.stemcr.2018.11.005

Neurodegeneration does not affect every neuron equally, but why? Nichterwitz et al. and Nijssen et al. introduced novel transcriptomic profiling methods to somatic motor neurons to find out what accounts for this difference.

Selected by Yen-Chung Chen

Background and context

Neurodegenerative diseases share a curious feature: The causative mutations involves ubiquitously expressed genes, yet only certain cell types are vulnerable. This might be because the dependency on the mutated gene is not the same across cell types, or because only some cell types are equipped with protective mechanisms against the deleterious consequences of the mutation.

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are neurodegenerative diseases involving most somatic motor neurons. They both spare somatic motor neurons controlling eye movement, which makes them nice models to study the mechanism underlying the difference in vulnerability between different cell types. Using these two diseases as a model, preprints from the Hedlund Lab introduced two novel methods to tackle this long-held question in neurodegeneration.

Key findings: LCM-seq

To understand why certain somatic motor neurons can tolerate SMN deficiency, Nichterwitz et al. devised a protocol, LCM-seq, in which they collected neurons of specific types with laser capture microdissection according to their location and then profiled the collected neurons with RNA-seq. The authors compared the transcriptome of different cell types, including susceptible somatic motor neurons, non-susceptible somatic motor neurons, visceral motor neurons, and other cholinergic neurons from the red nucleus. To understand the dynamic regulation during disease progression, they also performed analysis over different time points, including a pre-symptomatic stage (2 days after birth, P2), an early-symptomatic stage (P5), and a symptomatic stage (P10) on a mouse model of spinal muscular atrophy (SMA).

The authors first used hierarchical clustering to show that the transcriptome of somatic motor neuron samples, no matter resistant or not, segregated according to their disease status, while transcriptome of visceral motor neurons and red nucleus neurons did not. This segregation suggests that despite having a dysregulated transcriptome, somatic motor neurons resistant to SMA harbor a protective mechanism different from visceral motor neurons and red nucleus neurons. In all SMA somatic motor neuron samples, activation of p53 pathway was observed, consistent with a previous study [1]. Nonetheless, resistant and susceptible somatic motor neurons responded to SMA differently, sharing at most 20% of dysregulated genes in a late stage (P10). Specifically, genes involved in DNA damage repair and anti-apoptotic factors were activated in late-stage resistant somatic motor neurons, which could prevent cell death. Furthermore, genes involved in neurotransmitter release, including Syt1, Syt5, and Cplx2, were also upregulated in resistant neurons, thereby possibly compensating for neuromuscular junction dysfunction.

Together, by performing cell type-specific temporal profiling of transcriptomic changes in spinal muscular atrophy, this study revealed potential protective mechanisms that resistant somatic motor neurons utilize to maintain normal function in SMA.

Key findings: Axon-seq

In embryonic stem cell-derived spinal motor neurons, Nijssen et al. developed Axon-seq, which makes use of a novel microfluidic system allowing lysis of only axons growing in a compartment separated from soma.

RNA-seq of axon compartments revealed a unique transcriptome profile different from soma: the axon trascriptome contains fewer detected genes and is enriched in transcripts related to local translation, mitochondrial function, and nonsense-mediated decay. These enriched genes are consistent with the high energy demand at axon terminals and the need of local regulation.

To understand if axonal local regulation is dysregulated in neurodegenerative diseases, the authors further applied Axon-seq to stem cell-derived motor neurons overexpressing human SOD1G93Amutant protein, a well-established model of amyotrophic lateral sclerosis. Interestingly, most dysregulation uncovered by Axon-seq was only detectable in axons: 98% (119 in 121) differentially detected transcripts in SOD1G93A motor axons were only dysregulated in axon compartments but not in soma compartments. Among these axonal gene dysregulations, some are known to be detrimental in neurons, but their involvement in ALS has not been reported. To understand whether degeneration in motor neurons shares axonal dysregulation, the authors compared a previously published motor neuron axon dataset in spinal muscular atrophy [2] and identified dysregulated Neuropilin 1 (Nrp1) also in spinal muscular atrophy motor axons.

In short, this preprint introduced Axon-seq, a sensitive method to profile the axon transcriptome with high purity and revealed axon transcripts that are either cell-type specific or disease-relevant.

Why I like these preprints

Though researchers have long sought to understand the source of selective vulnerability by comparing involved and not-involved neurons, our knowledge of the underlying mechanism remains sparse and sometimes paradoxical. One major challenge of this approach is the robust nature of biological processes, in which cells and tissues would respond to better tolerate pathological disruptions. It is thus difficult to distinguish detrimental disease processes from compensatory responses, and some critical dysregulation might even be masked. To overcome this, I believe the development of high-throughput techniques with temporal and subcellular precision is a critical step.

These two preprints characterized transcriptomic changes in somatic motor neurons across cell types, time points, and subcellular compartments, and suggested dysregulations previously masked in bulk profiling. All this information is invaluable because if they are properly integrated with our prior knowledge, they can give us a better chance to identify compensation versus dysregulation and even to infer causality from a temporal profile.

Beyond a disease prospective, this powerful and scalable cellular model to investigate the transcriptome specifically in axons introduced by Nijssen et al. could also help us understand how different neurons find their way to their targets and wire accurately.

Open questions

  • LCM-seq
    • The authors suggested that in resistant somatic motor neurons, the compensatory transcriptional response is highly coordinated. It is thus tempting to imagine that this coordinated response is regulated by one or few transcription factors. Would it be possible to identify these coordinators from earlier- or pre-symptomatic samples?
    • The analysis that discovered protective responses focused mainly on the late-symptomatic stage after significant motor neuron loss [3], which is not uniform across subtypes of spinal motor neurons [4]. When spinal motor neurons are treated as a whole to perform differential expression analysis, would it be possible to tell whether differential expression reflects changes in transcription activity or in composition of collected cells?
  • Axon-seq
    • Control of local translation is known to be important in axons, and in this preprint, transcripts regulating local translation are enriched in Axon-seq. It will be very intriguing to see what kind of post-transcriptional regulation is present in axons to allow axon terminals or neuromuscular junctions to properly adapt and respond to environmental changes.

Reference

  1. Simon, C. M. et al. Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy. Cell Rep. 21, 3767–3780 (2017).
  2. Saal L, Briese M, Kneitz S, Glinka M, Sendtner M. Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation. RNA. 2014;20(11):1789-1802.
  3. Le, T. T. et al. SMNΔ7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum. Mol. Genet. 14, 845–857 (2005).
  4. Murray, L. M., Beauvais, A., Gibeault, S., Courtney, N. L. & Kothary, R. Transcriptional profiling of differentially vulnerable motor neurons at pre-symptomatic stage in the Smn (2b/-) mouse model of spinal muscular atrophy. Acta Neuropathol. Commun. 3, 55 (2015).

Tags: als, neurodegeneration, sma

doi: https://doi.org/10.1242/prelights.4503

(No Ratings Yet)

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the genomics category:

A fine kinetic balance of interactions directs transcription factor hubs to genes

Apratim Mukherjee, Samantha Fallacaro, Puttachai Ratchasanmuang, et al.

Selected by 23 July 2024

Deevitha Balasubramanian

Genomics

Enhancer-driven cell type comparison reveals similarities between the mammalian and bird pallium

Nikolai Hecker , Niklas Kempynck , David Mauduit, et al.

Selected by 02 July 2024

Rodrigo Senovilla-Ganzo

Bioinformatics

Modular control of time and space during vertebrate axis segmentation

Ali Seleit, Ian Brettell, Tomas Fitzgerald, et al.

AND

Natural genetic variation quantitatively regulates heart rate and dimension

Jakob Gierten, Bettina Welz, Tomas Fitzgerald, et al.

Selected by 24 June 2024

Girish Kale, Jennifer Ann Black

Developmental Biology

Also in the neuroscience category:

Platelet-derived LPA16:0 inhibits adult neurogenesis and stress resilience in anxiety disorder

Thomas Larrieu, Charline Carron, Fabio Grieco, et al.

Selected by 04 December 2024

Harvey Roweth

Neuroscience

Investigating Mechanically Activated Currents from Trigeminal Neurons of Non-Human Primates

Karen A Lindquist, Jennifer Mecklenburg, Anahit H. Hovhannisyan, et al.

Selected by 04 December 2024

Vanessa Ehlers

Neuroscience

Circadian modulation of mosquito host-seeking persistence by Pigment-Dispersing Factor impacts daily biting patterns

Linhan Dong, Richard Hormigo, Jord M. Barnett, et al.

Selected by 29 November 2024

Javier Cavieres

Neuroscience

Also in the systems biology category:

Modular control of time and space during vertebrate axis segmentation

Ali Seleit, Ian Brettell, Tomas Fitzgerald, et al.

AND

Natural genetic variation quantitatively regulates heart rate and dimension

Jakob Gierten, Bettina Welz, Tomas Fitzgerald, et al.

Selected by 24 June 2024

Girish Kale, Jennifer Ann Black

Developmental Biology

Expressive modeling and fast simulation for dynamic compartments

Till Köster, Philipp Henning, Tom Warnke, et al.

Selected by 18 April 2024

Benjamin Dominik Maier

Systems Biology

Clusters of lineage-specific genes are anchored by ZNF274 in repressive perinucleolar compartments

Martina Begnis, Julien Duc, Sandra Offner, et al.

Selected by 10 April 2024

Silvia Carvalho

Cell Biology

preLists in the genomics category:

End-of-year preprints – the genetics & genomics edition

In this community-driven preList, a group of preLighters, with expertise in different areas of genetics and genomics have worked together to create this preprint reading list. Categories include: 1) genomics 2) bioinformatics 3) gene regulation 4) epigenetics

 



List by Chee Kiang Ewe et al.

BSCB-Biochemical Society 2024 Cell Migration meeting

This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.

 



List by Reinier Prosee

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Semmelweis Symposium 2022: 40th anniversary of international medical education at Semmelweis University

This preList contains preprints discussed during the 'Semmelweis Symposium 2022' (7-9 November), organised around the 40th anniversary of international medical education at Semmelweis University covering a wide range of topics.

 



List by Nándor Lipták

20th “Genetics Workshops in Hungary”, Szeged (25th, September)

In this annual conference, Hungarian geneticists, biochemists and biotechnologists presented their works. Link: http://group.szbk.u-szeged.hu/minikonf/archive/prg2021.pdf

 



List by Nándor Lipták

EMBL Conference: From functional genomics to systems biology

Preprints presented at the virtual EMBL conference "from functional genomics and systems biology", 16-19 November 2020

 



List by Jesus Victorino

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20

 



List by Maiko Kitaoka et al.

Zebrafish immunology

A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.

 



List by Shikha Nayar

Also in the neuroscience category:

2024 Hypothalamus GRC

This 2024 Hypothalamus GRC (Gordon Research Conference) preList offers an overview of cutting-edge research focused on the hypothalamus, a critical brain region involved in regulating homeostasis, behavior, and neuroendocrine functions. The studies included cover a range of topics, including neural circuits, molecular mechanisms, and the role of the hypothalamus in health and disease. This collection highlights some of the latest advances in understanding hypothalamic function, with potential implications for treating disorders such as obesity, stress, and metabolic diseases.

 



List by Nathalie Krauth

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

SDB 78th Annual Meeting 2019

A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.

 



List by Alex Eve

Autophagy

Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.

 



List by Sandra Malmgren Hill

Young Embryologist Network Conference 2019

Preprints presented at the Young Embryologist Network 2019 conference, 13 May, The Francis Crick Institute, London

 



List by Alex Eve

Also in the systems biology category:

2024 Hypothalamus GRC

This 2024 Hypothalamus GRC (Gordon Research Conference) preList offers an overview of cutting-edge research focused on the hypothalamus, a critical brain region involved in regulating homeostasis, behavior, and neuroendocrine functions. The studies included cover a range of topics, including neural circuits, molecular mechanisms, and the role of the hypothalamus in health and disease. This collection highlights some of the latest advances in understanding hypothalamic function, with potential implications for treating disorders such as obesity, stress, and metabolic diseases.

 



List by Nathalie Krauth

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.

 



List by Alex Eve

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

 



List by Dey Lab

Pattern formation during development

The aim of this preList is to integrate results about the mechanisms that govern patterning during development, from genes implicated in the processes to theoritical models of pattern formation in nature.

 



List by Alexa Sadier
Close