Close

Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

Simao Coelho, Jongho Baek, Matthew S Graus, James M Halstead, Philip R Nicovich, Kristen Feher, Hetvi Gandhi, Katharina Gaus

Posted on: 14 January 2019

Preprint posted on 5 December 2018

Self-correcting microscope: real-time drift correction and optical path re-alignment via feedback enable super-super-resolution imaging

Selected by Lars Hubatsch

Categories: biophysics, immunology

Background

Super resolution microscopy has revolutionized imaging of biological samples by improving (lateral) resolution by an order of magnitude, from a few hundred nanometers to tens of nanometers, under optimized conditions, winning its inventors the 2014 Nobel Prize in Chemistry. Even higher resolutions are theoretically possible, however, current approaches suffer from hardware-induced problems.

In particular, drift-induced artefacts are problematic, because to obtain super-resolution, many images have to be captured of one and the same field of view. In every image, only a small sub-population of fluorescently labelled molecules are lit up, enabling precise localization of each molecule, using the knowledge that one and only one molecule is responsible for a given fluorescent spot. By combining the knowledge of all the molecules’ localizations, one obtains the final image, often by combining tens of thousands of sparsely lit frames. Evidently, it is crucial that the absolute position of molecules stays the same between frames. Any drift will have a severe impact on resolution, because one molecule could be mapped to different positions.

Key Technological Improvements

This preprint aims to overcome the current hardware limitations of super-resolution microscopy by introducing three different hardware-based correction mechanisms. In a first step, the authors use a feedback loop between the stage and fiducial markers close to the sample to realign the stage such that the same area of the sample is captured in the field of view at all times. Second, the light path, which also forms a major error source, is kept well-aligned by an independent feedback loop. Here, a piezo-electric mirror is used to repeatedly realign the optical path. Third, by imaging a nano-fabricated array of holes with precisely known positions, systematic errors of the camera and chromatic and optical aberrations can be reduced. Taken together, these three correction mechanisms increase precision and enable longer acquisitions.

Importance

Among several use cases highlighted by the preprint, particularly impressive is the ability to perform relatively precise measurements of the spatial separation of molecules on the scale of a few nanometers. According to the authors, similar measurements are not possible using other current technologies such as FRET. As proof of principle the nearest neighbor distance between pCD3ζ and CD45, two molecules involved in initiation of T cell receptor signaling, is measured, answering a so far unresolved question.

One thing missing from a non-expert’s perspective is a concise account of how difficult this setup is to implement in practice. Also, from a practical point of view, making the code available in a public repository and not ’on request’ would be a nice addition. In any case, feedback single-molecule localization microscopy seems like a potential game-changer, possibly being able to replace FRET and allowing imaging at unprecedented spatial resolution.

 

doi: https://doi.org/10.1242/prelights.7353

Read preprint (No Ratings Yet)

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the biophysics category:

Motor Clustering Enhances Kinesin-driven Vesicle Transport

Rui Jiang, Qingzhou Feng, Daguan Nong, et al.

Selected by 16 November 2024

Sharvari Pitke

Biophysics

Global coordination of protrusive forces in migrating immune cells

Patricia Reis-Rodrigues, Nikola Canigova, Mario J. Avellaneda, et al.

Selected by 10 October 2024

yohalie kalukula

Biophysics

Engineered Nanotopographies Induce Transient Openings in the Nuclear Membrane

Einollah Sarikhani, Vrund Patel, Zhi Li, et al.

Selected by 23 September 2024

Sristilekha Nath

Bioengineering

Also in the immunology category:

Alzheimer’s Disease Patient Brain Extracts Induce Multiple Pathologies in Vascularized Neuroimmune Organoids for Disease Modeling and Drug Discovery

Yanru Ji, Xiaoling Chen, Meek Connor Joseph, et al.

Selected by 07 November 2024

Manuel Lessi

Neuroscience

Global coordination of protrusive forces in migrating immune cells

Patricia Reis-Rodrigues, Nikola Canigova, Mario J. Avellaneda, et al.

Selected by 10 October 2024

yohalie kalukula

Biophysics

Integrin conformation-dependent neutrophil slowing obstructs the capillaries of the pre-metastatic lung in a model of breast cancer

Frédéric Fercoq, Gemma S. Cairns, Marco De Donatis, et al.

Selected by 07 October 2024

Simon Cleary

Cancer Biology

Also in the immunology category:

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.

 



List by Alex Eve

Autophagy

Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.

 



List by Sandra Malmgren Hill

Antimicrobials: Discovery, clinical use, and development of resistance

Preprints that describe the discovery of new antimicrobials and any improvements made regarding their clinical use. Includes preprints that detail the factors affecting antimicrobial selection and the development of antimicrobial resistance.

 



List by Zhang-He Goh

Zebrafish immunology

A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.

 



List by Shikha Nayar
Close