Close

CryoEM structure of the Vibrio cholerae Type IV competence pilus secretin PilQ

Sara J. Weaver, Matthew H. Sazinsky, Triana N. Dalia, Ankur B. Dalia, Grant J. Jensen

Posted on: 3 April 2020

Preprint posted on 4 March 2020

Article now published in Nature Communications at http://dx.doi.org/10.1038/s41467-020-18866-y

Weaver et al. present the first high-resolution structure of the Type IV secretin, PilQ from V. cholerae; providing insight into how it facilitates natural transformation in bacteria, and paving the way for future studies of its mechanism.

Selected by NYUPeerReview

Context

Bacteria take up DNA from the extracellular environment in a process called natural transformation. As one of several mechanisms of horizontal gene transfer in prokaryotes, this allows the rapid spread of genetic information across bacterial species, including the acquisition of antibiotic resistance genes. In Gram-negative bacteria, this process is mediated by the Type IV secretion system, which functions to import exogenous DNA. The Type IV secretion system is made up of four main protein complexes that assemble to span the bacterial cell envelope: 1) the pilus, a tube structure that projects into extracellular environment, responsible for the binding and uptake of DNA; 2) motors in the cytoplasm that drive pilus movement; 3) an inner membrane complex responsible for assembling the pilus; and 4) an outer membrane secretin, which forms a pore through which the pilus extends outside the cell. Until now, studying Type IV secretion system function has been limited by the absence of high resolution structures of its components. Here the authors solve the first structure of a Type IV secretion system secretin, PilQ from Vibrio cholerae, which provides insights into the protein complex that allows the pilus to traverse the outer membrane. 

 

Methods

The authors solve the structure of V. cholerae PilQ to 2.7 Å resolution using single particle Cryo-EM, and compare it to the structures of secretins from the Type II and Type III secretion systems. Using structure-guided mutagenesis, the authors functionally characterize mutants that shed light on the role of the Type IV secretion system in natural transformation. The authors dock the high-resolution PilQ structure into in situ cryo-electron tomography (cryo-ET) maps of M. xanthus Type IV secretin, identifying the conformational state of the high-resolution PilQ structure in the context of native cell membranes.

 

Key Results

1. High-resolution Cryo-EM structure of PilQ

 With a high resolution cryo-EM  structure in hand, the authors compared PilQ to related secretins, identifying both similar features and notable differences. The Type IV secretin consists of 14 monomers that assemble to form a hollow tube, creating a channel through the outer membrane. This assembly is similar to Type II and Type III secretins, though the number of subunits varies in each system. Halfway along its length, the diameter of the channel constricts, and may act as a gate to restrict passage of substrates through the secretin. PilQ has a short helix connecting the N0 and N3 domains, which is unstructured in other secretins. The orientation of the N0-N3 helix causes the diameter of the PilQ pore to vary on the periplasmic side of the gate, ranging from 90Å in the N0 domain to 60Å in the N3 domain. This is in contrast to Type II and Type III secretins, where the diameter through the pore is constant. Additionally,  while secretins of Type II and III secretion systems have alternating positive and negative regions internally, the Type IV PilQ is mostly negative, suggesting a possible mechanism allowing negatively charged DNA to move through its pore.

2. Locking the PilQ gate interferes with natural transformation

DNA is thought to be taken up through the pilus during natural transformation. To gain insight into how DNA uptake is controlled, two cysteine-pair mutants were introduced in the gating regions of PilQ, with the goal of reversibly locking the pore gate in a closed state through disulfide bonding. Transformation frequency was used as a measure of Type IV secretin function under the gated conditions. The “locked” mutants had decreased transformation frequency, suggesting that DNA uptake was being blocked. Upon DTT addition to break the disulfide bonds and unlock the gate, transformation frequency increased with increasing DTT concentration, suggesting that an open conformation of PilQ is required for DNA uptake.

3. High-resolution structure corresponds to the closed-gate conformation of PilQ observed by cryo-ET in situ

To determine what region of PilQ was embedded in the bacterial outer membrane, the PilQ structure was docked into a previously constructed cryo-ET of the M. xanthus Type IV system. Their structure is in good agreement with the non-piliated state of the Type IV secretion system. However, the PilQ structure does not fit into the cryo-ET reconstructions of the piliated state, suggesting that PilQ would require a significant conformational change in order to accomodate a pilus through the pore.  

 

Impact of Key Findings

This work determined the first high-resolution structure of the Type IV secretin, PilQ from V. cholerae. This structure provides insights into how the Type IV secretion system facilitates natural transformation in bacteria, and paves the way for deeper study on the mechanisms of Type IV system-dependent gene transfer. 

 

Open questions raised by study

  1. How might the secretin structure change in the presence of the pilus and other associated proteins?
  2. What is the structural and functional conservation of Type IV secretion across bacterial species?
  3. Is there a role for the N0-N3 connecting helix in regulating channel dynamics?

Tags: biochemistry, cryoem, structure, vibrio

doi: https://doi.org/10.1242/prelights.18075

Read preprint (No Ratings Yet)

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the biochemistry category:

Triglyceride metabolism controls inflammation and APOE4-associated disease states in microglia

Roxan A. Stephenson, Kory R. Johnson, Linling Cheng, et al.

Selected by 22 August 2024

Gustavo Stelzer, Marcus Oliveira

Biochemistry

Impaired 26S proteasome causes learning and memory deficiency and induces neuroinflammation mediated by NF-κB in mice

Christa C. Huber, Eduardo Callegari, Maria Paez, et al.

Selected by 22 August 2024

Gustavo Stelzer, Marcus Oliveira

Biochemistry

Notch3 is a genetic modifier of NODAL signalling for patterning asymmetry during mouse heart looping

Tobias Holm Bønnelykke, Marie-Amandine Chabry, Emeline Perthame, et al.

Selected by 06 June 2024

Bhaval Parmar

Developmental Biology

Also in the biophysics category:

Spiral-eyes: A soft active matter model of in vivo corneal epithelial cell migration

Kaja Kostanjevec, Rastko Sknepnek, Jon Martin Collinson, et al.

Selected by 03 September 2024

Prasanna Padmanaban

Biophysics

The actin cortex acts as a mechanical memory of morphology in confined migrating cells

Yohalie Kalukula, Marine Luciano, Guillaume Charras, et al.

Selected by 20 August 2024

Prasanna Padmanaban, Vibha SINGH

Biophysics

Direct single-molecule detection and super-resolution imaging with a low-cost portable smartphone-based microscope

Morgane Loretan, Mariano Barella, Nathan Fuchs, et al.

Selected by 14 August 2024

Shreya Pramanik

Biophysics

Also in the microbiology category:

Significantly reduced, but balanced, rates of mitochondrial fission and fusion are sufficient to maintain the integrity of yeast mitochondrial DNA

Brett T. Wisniewski, Laura L. Lackner

Selected by 30 August 2024

Leeba Ann Chacko

Cell Biology

The bat Influenza A virus subtype H18N11 induces nanoscale MHCII clustering upon host cell attachment

Maria Kaukab Osman, Jonathan Robert, Lukas Broich, et al.

Selected by 20 August 2024

Mitchell Sarmie, Mohammed A. Jalloh

Immunology

Characterization of natural product inhibitors of quorum sensing in Pseudomonas aeruginosa reveals competitive inhibition of RhlR by ortho-vanillin

Kathryn E. Woods, Sana Akhter, Blanca Rodriguez, et al.

Selected by 22 May 2024

UofA IMB565 et al.

Microbiology

preLists in the biochemistry category:

BSCB-Biochemical Society 2024 Cell Migration meeting

This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.

 



List by Reinier Prosee

Peer Review in Biomedical Sciences

Communication of scientific knowledge has changed dramatically in recent decades and the public perception of scientific discoveries depends on the peer review process of articles published in scientific journals. Preprints are key vehicles for the dissemination of scientific discoveries, but they are still not properly recognized by the scientific community since peer review is very limited. On the other hand, peer review is very heterogeneous and a fundamental aspect to improve it is to train young scientists on how to think critically and how to evaluate scientific knowledge in a professional way. Thus, this course aims to: i) train students on how to perform peer review of scientific manuscripts in a professional manner; ii) develop students' critical thinking; iii) contribute to the appreciation of preprints as important vehicles for the dissemination of scientific knowledge without restrictions; iv) contribute to the development of students' curricula, as their opinions will be published and indexed on the preLights platform. The evaluations will be based on qualitative analyses of the oral presentations of preprints in the field of biomedical sciences deposited in the bioRxiv server, of the critical reports written by the students, as well as of the participation of the students during the preprints discussions.

 



List by Marcus Oliveira et al.

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.

 



List by Nadja Hümpfer et al.

20th “Genetics Workshops in Hungary”, Szeged (25th, September)

In this annual conference, Hungarian geneticists, biochemists and biotechnologists presented their works. Link: http://group.szbk.u-szeged.hu/minikonf/archive/prg2021.pdf

 



List by Nándor Lipták

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

 



List by Dey Lab

Cellular metabolism

A curated list of preprints related to cellular metabolism at Biorxiv by Pablo Ranea Robles from the Prelights community. Special interest on lipid metabolism, peroxisomes and mitochondria.

 



List by Pablo Ranea Robles

MitoList

This list of preprints is focused on work expanding our knowledge on mitochondria in any organism, tissue or cell type, from the normal biology to the pathology.

 



List by Sandra Franco Iborra
Close