Transgenerational Regulation of Sexual Attractiveness in C. elegans Nematodes
Posted on: 11 February 2021 , updated on: 17 February 2021
Preprint posted on 10 February 2021
Article now published in Developmental Cell at http://dx.doi.org/10.1016/j.devcel.2022.01.005
The nematode Love Island: small heritable RNAs determine attractiveness over generations of offspring in C. elegans
Selected by Yasmin LauCategories: molecular biology
Background
Lifestyle changes in organisms mediated by environmental stresses can be achieved through epigenetic mechanisms. This can entail the binding of a protein to a specific region of a gene, causing modifications in gene expression programmes. Heritable phenotypes are thus propagated to progeny without changes in the DNA sequence of the gene itself. For example, in budding yeast, prion-like proteins are capable of governing the stage of their cell cycle during nutrient starvation by suppressing genes mediating meiotic progression (1). Such epigenetic heritable changes in lifestyle are often beneficial for the survival and development of an organism, as they can be reversible and dynamic, unlike DNA modifications.
Recently, an epigenetic mechanism influencing mating patterns in the nematode worm C. elegans has been revealed. In their lifespan, hermaphrodite worms propagate by either self-reproduction or outcrossing (mating with males). While self-reproduction offers a safer and more stable means of producing offspring, it does not result in as much genetic variation in future generations, nor offspring count, as the latter (2). Although hermaphrodites have been selected to self-reproduce over outcrossing despite having less favourable results, recent studies have shown that under stressful conditions, they choose outcrossing over self-reproduction. This increases their chances of survival due to genetic variability and improved adaptation of the offspring (3, 4). This switch in mating route was found to be prompted by heritable small RNAs which epigenetically control the secretion of male-attracting pheromones, an event that under “normal” conditions, seldom occurs in hermaphrodite worms.
In this preprint, the authors explore the epigenetic mechanism by which heritable small RNAs induce pheromone secretion and male attraction, as well as the maintenance of this phenotype over generations of offspring.
Key Findings
Attraction by pheromone secretion through heritable small RNAs is induced by heat stress
First, the authors asked whether premature attraction in males to young hermaphrodites can be induced by different environmental stresses, such as starvation and temperature changes. This was carried out by observing any tropism of male worms towards extracts of media in which stressed hermaphrodites have grown on. It was found that both short and long term starvation at the larval stage did not induce premature attractiveness in young worms, although long term incubation (10-15 generations) at a higher than favourable temperature (25 c) resulted in premature attraction over generations into adults. Moreover, premature attractiveness was also revealed to increase the frequency of mating, where males with fluorescently tagged sperm were tracked and 43% were shown to favour hermaphrodites grown at 25 C while only 14% chose those grown at 20 C (Figure 1).
Figure 1: The frequency of male C. elegans mated with hermaphrodites grown at 25 c and 20 c.
The authors hypothesised that pheromone secretion, thus premature attractiveness, is caused by the activity of heritable endogenous small interfering RNAs (siRNAs). Inheritance of phenotypes mediated by siRNAs requires the Argonaute Heritable RNAi Deficient 1 gene (HRDE-1). Auxin-induced depletion of HRDE-1 in conditional mutants grown at 25 C exhibited similar chemotaxis results as those grown at 20 C upon auxin exposure. These results collectively indicate that in addition to siRNA-induced pheromone secretion and attraction, the HRDE-1 gene is also required for siRNA activity and thus the heritable phenotype.
siRNA-induced premature attractiveness is associated with the regulation of sperm genes
Next, the authors sought to elucidate how heritable siRNAs control the propagated attractiveness phenotype. Many siRNAs that were found to be mis-regulated when worms grew at 25 C target sperm expressing genes. This suggests that when such siRNAs are mis-regulated, sperm shortage becomes imminent and male-attracting pheromones are induced. Moreover, several siRNA mutants which had premature attractiveness revealed sperm-producing defects, such as stunted spermatogenesis. Thus, it is likely that siRNAs target and regulate the expression of sperm-associated genes, which can subsequently trigger premature attraction.
Transgenerational premature attractiveness can influence the genetic landscape of a population
The authors also asked whether the development of premature attractiveness across a number of generations could affect the genetic structure of a population. This was tested by running a competitive assay for food and males between two lineages that are genetically identical, but have different epigenetic states (wild-type descendants and siRNA-defective descendants). siRNA-defective descendants were found to have a lower brood size, indicating that these contain less sperm count. Compared to the naive lineage, the latter are pushed to start producing male-attracting pheromone. Moreover, the authors also found that the relative frequency of premature attractiveness increased with the ability of males to detect the male-attracting odor. Thus, the presence of males that can detect the pheromone drives the spread of premature attractiveness across the population.
Why I like this preprint
The authors in this preprint highlight the significance of epigenetic modifications as a means for organisms to dynamically and very often reversibly change their behaviour to survive. It is interesting that all the substituents of an ecosystem are fine-tuned through such mechanisms on the molecular level to maintain the suitable conditions and balance for life to thrive. Understanding the way in which these organisms in nature adjust their lifestyles according to various environmental stresses gives us insight into biodiversity preservation strategies in light of global warming.
Questions for the authors
1. With some understanding of their response to heat stress, what are some biological strategies that could be carried out to preserve the biodiversity of C. elegans in a temperature-dependent manner?
2. Apart from mating routes, have there been any other lifestyle changes such as nutrient metabolism that are also underlay by heritable small RNAs?
References
1. Parfenova I., Barral Y. Yeast Sporulation and [SMAUG+] Prion: Faster is not always better. Molecular Cell. 77(2), 203-204 (2020).
2. Chasnov J.R. The evolutionary role of males in C. elegans. Worm. 2(1), e21146 (2013).
3. L. T. Morran, M. D. Parmenter, P. C. Phillips. Mutation load and rapid adaptation favour outcrossing over self-fertilization. Nature. 462, 350–352 (2009).
4. L. T. Morran, O. G. Schmidt, I. A. Gelarden, R. C. Parrish, C. M. Lively, C. M. Lively, Running with the Red Queen: host-parasite coevolution selects for biparental sex. Science. 333, 216–8 (2011).
doi: https://doi.org/10.1242/prelights.27354
Read preprintSign up to customise the site to your preferences and to receive alerts
Register hereAlso in the molecular biology category:
Green synthesized silver nanoparticles from Moringa: Potential for preventative treatment of SARS-CoV-2 contaminated water
Safieh Shah, Benjamin Dominik Maier
Non-disruptive inducible labeling of ER-membrane contact sites using the Lamin B Receptor
Jonathan Townson
HIF1A contributes to the survival of aneuploid and mosaic pre-implantation embryos
Anchel De Jaime Soguero
preListsmolecular biology category:
in the2024 Hypothalamus GRC
This 2024 Hypothalamus GRC (Gordon Research Conference) preList offers an overview of cutting-edge research focused on the hypothalamus, a critical brain region involved in regulating homeostasis, behavior, and neuroendocrine functions. The studies included cover a range of topics, including neural circuits, molecular mechanisms, and the role of the hypothalamus in health and disease. This collection highlights some of the latest advances in understanding hypothalamic function, with potential implications for treating disorders such as obesity, stress, and metabolic diseases.
List by | Nathalie Krauth |
BSCB-Biochemical Society 2024 Cell Migration meeting
This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.
List by | Reinier Prosee |
‘In preprints’ from Development 2022-2023
A list of the preprints featured in Development's 'In preprints' articles between 2022-2023
List by | Alex Eve, Katherine Brown |
CSHL 87th Symposium: Stem Cells
Preprints mentioned by speakers at the #CSHLsymp23
List by | Alex Eve |
9th International Symposium on the Biology of Vertebrate Sex Determination
This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.
List by | Martin Estermann |
Alumni picks – preLights 5th Birthday
This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.
List by | Sergio Menchero et al. |
CellBio 2022 – An ASCB/EMBO Meeting
This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.
List by | Nadja Hümpfer et al. |
EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)
A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.
List by | Alex Eve |
FENS 2020
A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020
List by | Ana Dorrego-Rivas |
ECFG15 – Fungal biology
Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome
List by | Hiral Shah |
ASCB EMBO Annual Meeting 2019
A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)
List by | Madhuja Samaddar et al. |
Lung Disease and Regeneration
This preprint list compiles highlights from the field of lung biology.
List by | Rob Hynds |
MitoList
This list of preprints is focused on work expanding our knowledge on mitochondria in any organism, tissue or cell type, from the normal biology to the pathology.
List by | Sandra Franco Iborra |