Close

A Scube2-Shh feedback loop links morphogen release to morphogen signaling to enable scale invariant patterning of the ventral neural tube

Zach Collins, Kana Ishimatsu, Tony Tsai, Sean Megason

Posted on: 3 December 2018

Preprint posted on 13 November 2018

Size matters: a size-dependent factor that scales sonic hedgehog morphogen gradient in early DV patterning.

Selected by Teresa Rayon

Categories: developmental biology

Summary:

How do morphogen gradients adapt to size differences? Within populations, individuals vary in size, yet their proportions are similar. This process is known as scale-invariant patterning, and it is a crucial process in development [1,2]. A well-characterized example of this mechanism is the patterning of the neural tube, where it has been shown that embryonic proportions are constant in mouse embryos of different sizes, as well as in embryos of different species. In this preprint, Collins et al. investigate the mechanism by which sonic hedgehog (Shh) morphogen gradient scales in the ventral neural tube in zebrafish embryos of different sizes.

To generate embryos of varying sizes, they surgically remove some cells in the blastula stage (prior to neuroectoderm formation); this rendered embryos of smaller sizes but with constant proportions. Quantifications of a Shh target demonstrate that the response is scaled following embryo reduction.

The authors focus their attention on Scube2, a lipid-binding protein required for Shh release non-cell-autonomously, which is expressed in the dorsal and intermediate neural tube. They demonstrate that Scube2 is a diffusible factor distributed throughout the embryo that is secreted from dorsal cells, and it is repressed by Shh signaling.

The authors next wanted to test whether Scube2 expression would scale like Shh reporter genes in sized-reduced embryos. When they measure Scube2 expression in size-reduced embryos, they find that the reduction in Scube2 levels is not scaled: the levels are 50% reduced at DV positions of maximal expression compared to controls, a pattern not found for al scaling invariant genes formerly tested. In addition, when Scube2 is overexpressed in size-reduced embryos, Shh target response is of the same amplitude in embryos of all sizes. This implicates that control of scube2 is responsible for adjusting the Shh signalling gradient in a decreased tissue.

 

Figure 1. Scube2 expression is size-dependent and required for pattern scaling. Reproduced from Figure 6 of the preprint

Why I chose the paper:

 Embryo development is strikingly robust, and it can cope with variations in size or morphological alterations [3], however the mechanisms that allow embryos to adapt are poorly understood. Collins et al. identify a size-dependent factor that allows the scaling of Shh morphogen gradient in embryos of reduced sizes, adjusting proportionally to the embryonic axis.

The first thing I liked about this work is the surgical method developed in The Megason group to change embryo size and look at size-dependent scaling. They generate perfectly viable and scaled embryos by removing a big percentage of cells at the blastula stage without the need of genetically altering the embryos, which then allows them to perturb different genes.

Their molecular characterization with fish mutants and transgenic reporters is reminiscent of an expander-repressor model [1]. In this model, the morphogen inhibits the expression of an “expander” molecule (Scube2 ), which functions to increase the gradient, holding back morphogen levels at a specific position. What I like about this model is that it does not rely on morphogen diffusion or degradation – that are common molecular properties of proteins regardless of the embryo size – but it relies on the feedback between “expander” and “inhibitor” to continuously adjust the gradient globally. It will be good to see how an expander-repressor model adjusts to their findings and what new predictions we can infer from the model.

Further reading:

Almuedo-Castillo, M., Bläßle, A., Mörsdorf, D., Marcon, L., Soh, G. H., Rogers, K. W., … Müller, P. (2018). Scale-invariant patterning by size-dependent inhibition of Nodal signalling. Nature Cell Biology, 20(9), 1032–1042. http://doi.org/10.1038/s41556-018-0155-7

Ben-Zvi, D., & Barkai, N. (2010). Scaling of morphogen gradients by an expansion-repression integral feedback control. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6924–9. http://doi.org/10.1073/pnas.0912734107

Umulis, D. M., & Othmer, H. G. (2013). Mechanisms of scaling in pattern formation. Development (Cambridge, England), 140(24), 4830–43. http://doi.org/10.1242/dev.10051                                         

Questions to the authors:

  1. The neural tube is highly similar in fish and mammals even though there are some differences in the formation of the neural tube. Do the authors think that the expander-repressor model through Scube2 will operate similarly in mammals?
  2. The size reduction of the embryos occurs early in development, before any Shh has been secreted. Do the authors think their identified mechanism can operate after injury, once the morphogen gradient is ongoing?
  3. Invariant scaling achieves the same proportions of embryos that vary in size. Do the authors know if the scaling mechanisms have the same tempo in embryos of different sizes?

References:

  1. Shilo, B.-Z., & Barkai, N. (2017). Developmental Cell Perspective Buffering Global Variability of Morphogen Gradients. Developmental Cell, 40, 429–438. http://doi.org/10.1016/j.devcel.2016.12.012.
  2. Garric, L., & Bakkers, J. (2018). Shaping up with morphogen gradients. Nature Cell Biology, 20(9), 998–999. http://doi.org/10.1038/s41556-018-0168-2.
  3. Lawrence, P. A., & Levine, M. (2006). Mosaic and regulative development: two faces of one coin. Current Biology, 16(7), R236–R239. http://doi.org/10.1016/j.cub.2006.03.016.

Tags: morphogen gradient, neural tube, sonic hedgehog, zebrafish

doi: https://doi.org/10.1242/prelights.5954

Read preprint (No Ratings Yet)

Author's response

Sean Megason shared

Q1. The neural tube is highly similar in fish and mammals even though there are some differences in the formation of the neural tube. Do the authors think that the expander-repressor model through Scube2 will operate similarly in mammals?

By best guess is yes at the big picture level, but there are several potential differences that it would be great if someone would dig into. The first is scaling itself. In mammals, you can make smaller embryos by separating blastomeres at the 2 or 4 cell stage. These go on to make smaller blastocysts but after implantation there is an interesting process of size adjustment in which the smaller embryos catch up in size. It would be interesting to study how smaller embryos know what size to catch-up to and if this catch-up process overlaps with neural patterning and if so what is the role of Scube2. In the paper, we focus on neural patterning in size-reduced embryos because it is a nice experimental system, but we think that this feedback mechanism has broader implications. For example, the neural tube changes in size along the A-P axis and heterozygotes for Sonic hedgehog pattern fine. The scube2 feedback system may be more important for robustness in these contexts than for whole animal size variation. The second is the relationship of patterning and morphogenesis in the mammalian neural tube. Despite a lot of work on neural tube patterning in mouse, we know very little about what cell movements and dynamic gene expression changes within cells are occurring during patterning. Some nice recent work from Phillip Keller’s lab (McDole et al, Cell, 2018) has laid a foundation to address this. It will be nice to see how patterning dynamics at the single-cell level compare across species.

Q2. The size reduction of the embryos occurs early in development before any Shh has been secreted. Do the authors think their identified mechanism can operate after injury, once the morphogen gradient is ongoing?

There are time scales to both the specification of different cell types by different Shh concentrations, and the adjustment of the Shh gradient by Scube2. Our best guess is that both of these are on the 1-2hr scale in zebrafish and these processes may overlap in time. So if the Shh gradient was perturbed right in the midst of patterning, the system described in the paper might not have time to fully readjust. However, it is possible that there are conceptually and potentially mechanistically related feedback systems that ensure proper domain size as the embryo grows after the initial patterning which could fix the pattern.

Q3. Invariant scaling achieves the same proportions of embryos that vary in size. Do the authors know if the scaling mechanisms have the same tempo in embryos of different sizes?

Our previous work on somites (Ishimatsu, Development 2018) showed that somite patterning does happen at the same tempo in smaller embryos. However, for the neural tube, we would expect that smaller neural tubes should pattern faster unless there is a separation in time scales between gradient formation and interpretation. We don’t have clear data on this but our best guess is that there is not–these timescales are on the same order and thus fate specification happens during a dynamically changing rather than steady-state morphogen profile. If indeed, neural patterning happens at a different tempo in smaller embryos whereas the somites are the same, it raises the interesting question of how the rate of development is coordinated across the embryo

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the developmental biology category:

Specialized signaling centers direct cell fate and spatial organization in a limb organoid model

Evangelia Skoufa, Jixing Zhong, Oliver Kahre, et al.

Selected by 05 September 2024

Ryan Harrison

Developmental Biology

Adult caudal fin shape is imprinted in the embryonic fin fold

Eric Surette, Joan Donahue, Stephanie Robinson, et al.

Selected by 28 August 2024

Isabella Cisneros

Developmental Biology

TAK1 operates at the primary cilium in non-canonical TGFB/BMP signaling to control heart development

Canan Doganli, Daniel A. Baird, Yeasmeen Ali, et al.

Selected by 16 August 2024

Reinier Prosee

Developmental Biology

preLists in the developmental biology category:

BSDB/GenSoc Spring Meeting 2024

A list of preprints highlighted at the British Society for Developmental Biology and Genetics Society joint Spring meeting 2024 at Warwick, UK.

 



List by Joyce Yu, Katherine Brown

GfE/ DSDB meeting 2024

This preList highlights the preprints discussed at the 2024 joint German and Dutch developmental biology societies meeting that took place in March 2024 in Osnabrück, Germany.

 



List by Joyce Yu

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

preLights peer support – preprints of interest

This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.

 



List by preLights peer support

The Society for Developmental Biology 82nd Annual Meeting

This preList is made up of the preprints discussed during the Society for Developmental Biology 82nd Annual Meeting that took place in Chicago in July 2023.

 



List by Joyce Yu, Katherine Brown

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Alumni picks – preLights 5th Birthday

This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.

 



List by Sergio Menchero et al.

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.

 



List by Nadja Hümpfer et al.

2nd Conference of the Visegrád Group Society for Developmental Biology

Preprints from the 2nd Conference of the Visegrád Group Society for Developmental Biology (2-5 September, 2021, Szeged, Hungary)

 



List by Nándor Lipták

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

EMBL Conference: From functional genomics to systems biology

Preprints presented at the virtual EMBL conference "from functional genomics and systems biology", 16-19 November 2020

 



List by Jesus Victorino

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.

 



List by Alex Eve

Society for Developmental Biology 79th Annual Meeting

Preprints at SDB 2020

 



List by Irepan Salvador-Martinez, Martin Estermann

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

Planar Cell Polarity – PCP

This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.

 



List by Ana Dorrego-Rivas

Cell Polarity

Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.

 



List by Yamini Ravichandran

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20

 



List by Maiko Kitaoka et al.

3D Gastruloids

A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells). Updated until July 2021.

 



List by Paul Gerald L. Sanchez and Stefano Vianello

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

EDBC Alicante 2019

Preprints presented at the European Developmental Biology Congress (EDBC) in Alicante, October 23-26 2019.

 



List by Sergio Menchero et al.

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

 



List by Dey Lab

SDB 78th Annual Meeting 2019

A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.

 



List by Alex Eve

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.

 



List by Rob Hynds

Young Embryologist Network Conference 2019

Preprints presented at the Young Embryologist Network 2019 conference, 13 May, The Francis Crick Institute, London

 



List by Alex Eve

Pattern formation during development

The aim of this preList is to integrate results about the mechanisms that govern patterning during development, from genes implicated in the processes to theoritical models of pattern formation in nature.

 



List by Alexa Sadier

BSCB/BSDB Annual Meeting 2019

Preprints presented at the BSCB/BSDB Annual Meeting 2019

 



List by Dey Lab

Zebrafish immunology

A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.

 



List by Shikha Nayar
Close