Menu

Close

Lineage tracing on transcriptional landscapes links state to fate during differentiation

Caleb Weinreb, Alejo E Rodriguez-Fraticelli, Fernando D Camargo, Allon M Klein

Preprint posted on December 01, 2018 https://www.biorxiv.org/content/early/2018/12/01/467886

Article now published in Science at http://dx.doi.org/10.1126/science.aaw3381

Lineage-traced scRNA-seq reveals that inheritable fate restriction occurring early in hematopoiesis is not detected computationally from the progenitor transcriptome.

Selected by Yen-Chung Chen

Background and context

Developmental biologists have long been picturing development as a process starting from a homogeneous population which becomes more and more different and eventually gives rise to a variety of terminally differentiated cell types. Waddington envisioned that this process governed by an “epigenetic landscape” is defined by genes and their interactions. Some key genes in the specification processes have been discovered since then, but the major regulators for most of the states in developmental processes remain uncharted to date.

The advent of massively parallel profiling techniques for single cells allows capturing a snapshot of a huge number of cell states simultaneously. When capturing cells from different stages, the similarity between the cells can be utilized to determine cell types and to reconstruct the developmental paths leading to each type.

Single cell profiling techniques have helped in the discovery of otherwise unannotated cell types and genes that might tune how a cell commits to a particular fate. However, because the techniques only capture snapshots of different states but not how they change in time, it’s challenging to determine whether each cell decides their goal early on and progresses along that particular branch to become a certain type, or if the cells remain plastic and carry the potential to switch trajectories along the way before becoming terminally differentiated. As a result, the reconstructed developmental paths need to be validated by experiments like lineage tracing to understand the degree of coupling between an early state and a terminally differentiated state.

Key findings

Lineage tracing experiments are often of lower throughput and require a specific early marker. One way to address this challenge is to label developing cells with unique barcodes that are heritable through cell divisions, and infer later whether two cell types come from the same progenitor pool by calculating the degree of barcode overlap between the two mature cell types. In this preprint, Weinreb et al. first barcoded murine hematopoietic progenitor cells using lentivirus. Then, the cells were cultured in a condition enabling multilineage differentiation and were allowed to proliferate for two days. The cells were collected on day 2, day 4, and day 6 of in vitro differentiation. By matching barcodes, this technique gives transcriptome and clonal information for multiple stages of differentiation.

Collecting clonal and transcriptome information allowed the authors to examine two important questions: Whether the differentiating cells are really progressing through a branching process, in which one cell cannot contribute to alternative fates once it has passed the branching point, and whether the time of branching event can be determined from the transcriptome alone (See figure 1).

Figure 1. Lineage-traced single cell RNA-seq helps estimate the relationships between transcriptionally defined cell states (Adapted from figure 1 of the preprint, under a CC-BY-NC-ND 4.0 International license).

 

The authors first demonstrated that the cells of a particular transcriptionally defined type share most of their barcodes, indicating that transcriptionally determined cell types arose from different populations of progenitors. Then, the authors compared if transcriptomes of differentiated sister cells (“lateral prediction”) predict a cell’s fate better than the transcriptomes of progenitor sister cells (“forward prediction”), and discovered predictions from differentiated sister cells are more accurate. This difference in prediction power before and after differentiation could either be a result of the noisy nature of single cell RNA-seq which masks minor transcriptional differences, or it suggests that cellular properties other than the transcriptome also modulate cell fate decision.

To understand the exact point when a cell’s fate is specified, the authors used several computational methods to predict the time of diversification events, and compared the predicted time points to the point when different clones no longer contribute to the alternative fate. It turned out a cell’s ability to commit to other paths is restricted much earlier than what was predicted computationally based on the transcriptome alone.

Taken together, by combining clonal and transcriptome information, the authors showed that transcriptionally defined cell types in hematopoiesis are also clonally distinct. Furthermore, they showed that changes in the transcriptome correlate well with developmental time, and that fate restriction precedes overall transcriptomic discretion in development and might be better predicted by examining master cell fate regulators alone.

Why I like this preprint

The high-throughput nature of single cell profiling techniques enables researchers to study cells with different states with a high resolution. Nonetheless, it is challenging to understand how these states are related to each other because the profiling technique is essentially snapshot taking and provides no information about relationships. Multiple assumptions are required in developmental biology to learn the continuous process of development from single cell profiling. Two common assumptions are that the differentiation process is a branching and definite process, and that similarity in transcriptomes can be interpreted as temporal proximity. This preprint focuses on these key questions and benchmarks them experimentally. Although the necessity to separate sister cells limits the use of this technique, when applicable, it could be used to better capture development as a continuous process.

Open questions

  1. In a previous study [1], the authors utilized an elegant clonal tagging by an inducible transposable element in a mouse model, while lentiviral transduction was used in the preprint. I was wondering what the considerations behind the different methods chosen.
  2. The authors devised an elegant and user-friendly visualization tool for single cell profiling data [2], and in this preprint, the authors used SPRING plot to visualize multimodal (expression and clonal identity) data. I was wondering if it would be a plan to add this functionality to the tool, for it would be a great asset to the community.

References

  1. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).
  2. Weinreb, C., Wolock, S. & Klein, A. M. SPRING: A kinetic interface for visualizing high dimensional single-cell expression data. Bioinformatics 34, 1246–1248 (2018).

Tags: hematopoiesis, lineage tracing, scrna-seq

Posted on: 5th February 2019 , updated on: 6th February 2019

Read preprint (No Ratings Yet)




  • 1 comment

    1 year

    Allon Klein

    Thanks for a great summary of our paper! I can suggest some points related to your open questions:

    Q1: How to barcode? Inducible transposable elements or lentiviral transduction? The transposable elements are fantastic for non-perturbative barcoding in vivo. Their limitation is that they don’t create a barcode expressed in mRNA. So they can’t be read out by single cell RNA-Seq. The lentiviral approach has the big disadvantage of requiring a massive perturbation (namely isolating the cells and infecting them in vitro), but it allows reading out a barcode by scRNA-Seq.

    Q2: Thanks for the great suggestion to visualize clonal data using SPRING! We don’t yet have an “all in one” package that goes from raw clonal data to completed analyses on SPRING yet. It’s a great idea.

    6

    Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    ASCB EMBO Annual Meeting 2019

    A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

     



    List by Madhuja Samaddar, Ramona Jühlen, Amanda Haage, Laura McCormick, Maiko Kitaoka

    EDBC Alicante 2019

    Preprints presented at the European Developmental Biology Congress (EDBC) in Alicante, October 23-26 2019.

     



    List by Sergio Menchero, Jesus Victorino, Teresa Rayon, Irepan Salvador-Martinez

    EMBL Seeing is Believing – Imaging the Molecular Processes of Life

    Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

     



    List by Gautam Dey

    SDB 78th Annual Meeting 2019

    A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.

     



    List by Alex Eve

    Lung Disease and Regeneration

    This preprint list compiles highlights from the field of lung biology.

     



    List by Rob Hynds

    Young Embryologist Network Conference 2019

    Preprints presented at the Young Embryologist Network 2019 conference, 13 May, The Francis Crick Institute, London

     



    List by Alex Eve

    Pattern formation during development

    The aim of this preList is to integrate results about the mechanisms that govern patterning during development, from genes implicated in the processes to theoritical models of pattern formation in nature.

     



    List by Alexa Sadier

    BSCB/BSDB Annual Meeting 2019

    Preprints presented at the BSCB/BSDB Annual Meeting 2019

     



    List by Gautam Dey

    Zebrafish immunology

    A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.

     



    List by Shikha Nayar
    Close