Menu

Close

Super-Mendelian inheritance mediated by CRISPR/Cas9 in the female mouse germline

Hannah A. Grunwald, Valentino M. Gantz, Gunnar Poplawski, Xiang-ru S. Xu, Ethan Bier, Kimberly L. Cooper

Preprint posted on July 07, 2018 https://www.biorxiv.org/content/early/2018/07/07/362558

A CRISPR-mediated Selfish Gene? Grunwald and colleagues design a “CopyCat” element that drives its own inheritance in the female mouse germline.

Selected by Rebekah Tillotson

Background

Modelling multigenic human diseases in mice can be very costly and time consuming due to the low frequency of animals that have the correct genotype. For example, if three independent alleles are involved, 146 offspring are required for a 90% chance of producing a single animal with the disease genotype. Recently, CRISPR/Cas9 technology has been employed to drive inheritance of specific alleles in insects. In these studies, a cassette consisting of Cas9 and a gRNA targeting a gene of interest was inserted into the site targeted by the gRNA, disrupting gene function. This cassette led to cleavage of the homologous allele, which when repaired by homology directed repair (HDR), copied the cassette into the second allele – thereby driving its own inheritance. Grunwald and colleagues investigate how this technology can be applied to mice.

Key findings

The authors designed a “CopyCat” element consisting of a gRNA targeting their gene of interest (Tyrosinase) and a fluorescent reporter (CMV-mCherry) – see figure below. This cassette was knocked-into exon 4 of the Tyrosinase gene, disrupting gene function. When bred with mice constitutively expressing Cas9, the gRNA and Cas9 protein are united at fertilisation in offspring. This resulted in homozygous loss-of-function, indicated by an albino phenotype. However, further analysis found that gene disruption was due to insertions/deletions (“indels”) resulting from non-homologous end joining (NHEJ), rather than homology directed repair (HDR) conversion using the “CopyCat” allele.

They hypothesised that mutagenesis was induced too late – missing the optimum window for HDR in early embryogenesis. They overcame this problem by controlling the activation of Cas9 expression with Cre recombinase. Activation of Cas9 during oogenesis with Vasa-Cre led to 45% of offspring in the next generation carrying the HDR converted allele (17% carrying indels and 38% where the gene was not mutated). While successful in the female germline, HDR was not detected when Cas9 was activated by either Vasa-Cre or Stra8-Cre in the male germline.

This system will dramatically improve disease model production in laboratory studies. While the high HDR efficiency achieved in the insect studies led to the proposal that this technology could reduce wild populations of malaria-carrying mosquitos, the authors conclude that this method should be optimised further before it could be considered applicable for the control of invasive rodent populations.

Figure 1: Schematic of the “CopyCat” system. (a) The “CopyCat” cassette was knocked into exon 4 of the Tyrosinase gene. (b) Cas9-mediated cleavage of the other allele can be repaired by homology directed repair (HDR), resulting in the copying of the “CopyCat” cassette and disruption of gene function.

 

What I like about this work

The authors have developed an elegant CRISPR-based system for driving inheritance of a modified allele. Their findings highlight the importance of tightly controlled Cas9 expression, furthering our understanding about the time windows when HDR is the predominant repair pathway in gametogenesis and early embryonic development. In contrast to the cassette used in insects, this is the first study that combines gRNA and Cas9 genes from different parents-of-origin. Altogether, it is an excellent example of how CRISPR/Cas9 technology can revolutionise in vivo studies.

Future directions/Comments/Questions for the authors

Ideally the method could be adapted to successfully drive inheritance in the male germline. The authors used existing Cas9 transgenic lines, limiting their choice to two constitutively expressed alleles that were activated by the removal of a “STOP” cassette by Cre drivers. The creation of novel transgenic lines where Cas9 is driven by cell-type specific promoters could limit Cas9 expression to the critical time window during spermatogenesis (and would simplify the method by eliminating the need for Cre transgenes). Promoters that transiently express Cas9 may also reduce toxicity – previously reported to occur when both Cas9 and gRNA are continually expressed. Lastly, I wonder whether the HDR rate would increase with a smaller cassette [the “CopyCat” cassette is 2.8 kb]?

Tags: crispr, gene drive, mouse

Posted on: 16th July 2018 , updated on: 17th July 2018

Read preprint (1 votes)




  • 1 comment

    5 months

    Kim Cooper

    Thank you for your preLight! I like your questions/future directions. Yes, we do think we can improve efficiency using a different promoter to drive Cas9 (and directly rather than in a conditional system). We have mice to work on that next step now. We are also interested in developing an inducible system once we get the timing right. Last, we aren’t sure if a smaller piece would mobilize more efficiently, but we are interested to see what happens to larger pieces.

    1

    Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the genetics category:

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner

    Federico Germani, Daniel Hain, Denise Sternlicht, et al.



    Selected by Rohan Khadilkar

    Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila

    Charles A Seller, Chun-Yi Cho, Patrick H O'Farrell



    Selected by Gabriel Aughey

    Evidence for an Integrated Gene Repression Mechanism based on mRNA Isoform Toggling in Human Cells

    Ina Hollerer, Juliet C Barker, Victoria Jorgensen, et al.



    Selected by Clarice Hong

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Arterio-Venous Remodeling in the Zebrafish Trunk Is Controlled by Genetic Programming and Flow-Mediated Fine-Tuning

    Ilse Geudens, Baptiste Coxam, Silvanus Alt, et al.



    Selected by Andreas van Impel

    CRISPR/Cas9-mediated gene deletion of the ompA gene in an Enterobacter gut symbiont impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes

    Shivanand Hegde, Pornjarim Nilyanimit, Elena Kozlova, et al.



    Selected by Snehal Kadam

    millepattes micropeptides are an ancient developmental switch required for embryonic patterning

    Suparna Ray, Miriam I Rosenberg, Hélène Chanut-Delalande, et al.



    Selected by Erik Clark

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    The cis-regulatory logic underlying abdominal Hox-mediated repression versus activation of regulatory elements in Drosophila

    Arya Zandvakili, Juli Uhl, Ian Campbell, et al.



    Selected by Clarice Hong

    1

    Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages is necessary for functional spinal cord regeneration in zebrafish

    Themistoklis M. Tsarouchas, Daniel Wehner, Leonardo Cavone, et al.



    Selected by Shikha Nayar

    1

    JNK-mediated spindle reorientation in stem cells promotes dysplasia in the aging intestine

    Daniel Hu, Heinrich Jasper



    Selected by Maiko Kitaoka

    Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions

    Summer B. Thyme, Lindsey M. Pieper, Eric H. Li, et al.



    Selected by Daniel Grimes

    The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization

    Sarah Herberg, Krista R Gert, Alexander Schleiffer, et al.



    Selected by James Gagnon

    Also in the molecular biology category:

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.



    Selected by Lorenzo Lafranchi

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.

    AND

    Live-cell single RNA imaging reveals bursts of translational frameshifting

    Kenneth R Lyon Jr, Luis U Aguilera, Tatsuya Morisaki, et al.



    Selected by Nicola Stevenson

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Retrieving High-Resolution Information from Disordered 2D Crystals by Single Particle Cryo-EM

    Ricardo Righetto, Nikhil Biyani, Julia Kowal, et al.



    Selected by David Wright

    The modular mechanism of chromocenter formation in Drosophila

    Madhav Jagannathan, Ryan Cummings, Yukiko M Yamashita



    Selected by Maiko Kitaoka

    1

    The structural basis for release factor activation during translation termination revealed by time-resolved cryogenic electron microscopy

    Ziao Fu, Gabriele Indrisiunaite, Sandip Kaledhonkar, et al.



    Selected by David Wright

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    DNA microscopy: Optics-free spatio-genetic imaging by a stand-alone chemical reaction

    Joshua A. Weinstein, Aviv Regev, Feng Zhang



    Selected by Theo Sanderson

    2

    Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila

    Charles A Seller, Chun-Yi Cho, Patrick H O'Farrell



    Selected by Gabriel Aughey

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Target-specific precision of CRISPR-mediated genome editing

    Anob M Chakrabarti, Tristan Henser-Brownhill, Josep Monserrat, et al.



    Selected by Rob Hynds

    1

    Transient intracellular acidification regulates the core transcriptional heat shock response

    Catherine G Triandafillou, Christopher D Katanski, Aaron R Dinner, et al.



    Selected by Srivats Venkataramanan

    1

    Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

    Sydney M Shaffer, Benjamin L Emert, Ann E. Sizemore, et al.



    Selected by Leighton Daigh

    2

    Site-specific K63 ubiquitinomics reveals post-initiation regulation of ribosomes under oxidative stress

    Songhee Back, Christine Vogel, Gustavo M Silva



    Selected by Srivats Venkataramanan

    1

    Close