Photoperiod sensing of the circadian clock is controlled by ELF3 and GI

Usman Anwer, Amanda Davis, Seth Jon Davis, Marcel Quint

Preprint posted on May 14, 2018

ELF3 and GI are essential ZEITNEHMERS to perceive light input into the clock and measure the photoperiod. Mutants fail to regulate photoperiod-responsive growth and development.

Selected by Annika Weimer


ELF3 and GI are essential ZEITNEHMERS to perceive light input into the clock and measure the photoperiod. Mutants fail to regulate photoperiod-responsive growth and development.

The bigger picture

The circadian clock is an essential time keeping mechanism in plants that allows the organism to synchronize the internal cellular mechanism to the external environment with light as the primary cue perceived by central oscillators. These processes control various activities, many of which have agricultural importance. The circadian clock consists of three essential parts: input, core oscillator and output. Zeitgeber (German for time-givers), deliver external information, such as light and temperature conditions, to Zeitnehmers (German for time-takers) which synchronize the clock with the local environment. The oscillator ensures a 24 h rhythmicity that lasts even in the absence of external cues. Anwer et al. show that ELF3 and GI are not only essential for the oscillator function but also mediating light inputs to the oscillator, making them essential Zeitnehmers. Both genes are conserved in flowering plants representing important breeding targets. This could long-term lead to photoperiod-insensitive crops.


The preprint

ELF3 (EARLY FLOWERING 3) and GI (GIGANTEA) are both involved in the regulation of the circadian clock in Arabidopsis. Single mutants of elf3 and gi were studied previously, but a detailed analysis of the double mutant elf3 gi in this preprint revealed new interesting results.

Flowering time

Even though flowering time in single mutants of ELF3 and GI differs from wild type plants, the response to light stimuli is still intact in the single mutant. Anwer et al. showed that this, however, is completely lost in the double mutant elf3 gi and the flowering time is unaffected by the photoperiod. Also, typical expression patterns of flowering time genes, such as CO and FT show reduced fluctuation in elf3 gi.

Growth inhibition

Wild-type hypocotyls elongate in the dark (e.g. in the soil to quickly reach the sunlight), but slow down their growth once they reach the light, a phenomenon known as growth inhibition.  Measuring the hypocotyl length in elf3 gi single and double mutants indicated that there is an additive effect of ELF3 and GI in photoperiodic sensing in controlling elongation. Surprisingly, the authors found that ELF3 might also act as a growth promoting factor, especially under blue light conditions. PIF4, a regulator of hypocotyl growth, is upregulated in the double mutant, explaining the extreme growth phenotype, which is neither light nor clock regulated.

Defects in elf3 gi as a result of malfunctional oscillator?

ELF3 and GI repress growth during night and day, respectively, and both are needed for effective gating of clock-controlled growth and work independent of each other in the circadian clock. Under free running conditions, i.e. a rhythm that is not adjusted to the 24-hour cycle, gi mutants show a compromised but functional clock, however, in elf3 and elf3 gi mutants no rhythm can be observed, hinting toward a dysfunctional oscillator. Interestingly, the oscillator is still responsive to light changes in gi and elf3 with slight changes in expression of major oscillator genes. However, the overall pattern was comparable to wild type. In the elf3 gi double mutant no response to diurnal light signals could be observed.

Future work

What is the overall phenotype of the elf3 gi mutants, under control conditions and the conditions tested in the preprint (on a whole plant level)?

It is interesting to think about photoperiod insensitive crops. How would photoperiod insensitivity affect the yield of crops? Are there some studies about that? What are the dry weight, amount of seeds, leaf size in your Arabidopsis mutants?

Are elf3 gi double mutants more sensitive to stress? And which downstream processes, such as cell divisions, are affected by the malfunctioning oscillator in elf3 gi double mutants?

Tags: circadian clock, plant development

Posted on: 1st June 2018 , updated on: 4th June 2018

Read preprint (1 votes)

  • Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    LADL: Light-activated dynamic looping for endogenous gene expression control

    Mayuri Rege, Ji Hun Kim, Jacqueline Valeri, et al.

    Selected by Ivan Candido-Ferreira

    Quantitative, real-time, single cell analysis in tissue reveals expression dynamics of neurogenesis

    Cerys S Manning, Veronica Biga, James Boyd, et al.

    Selected by Teresa Rayon

    The cis-regulatory logic underlying abdominal Hox-mediated repression versus activation of regulatory elements in Drosophila

    Selected by Clarice Hong


    Optogenetic dissection of mitotic spindle positioning in vivo

    Lars-Eric Fielmich, Ruben Schmidt, Daniel J Dickinson, et al.

    Selected by Angika Basant


    Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo.

    Jonathan B Michaux, Francois B Robin, William M McFadden, et al.

    Selected by Sundar Naganathan

    A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells

    Elsy Buitrago-Delgado, Elizabeth Schock, Kara Nordin, et al.

    Selected by Amanda Haage

    Moving beyond P values: Everyday data analysis with estimation plots

    Joses Ho, Tayfun Tumkaya, Sameer Aryal, et al.

    Selected by Gautam Dey


    Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages is necessary for functional spinal cord regeneration in zebrafish

    Themistoklis M. Tsarouchas, Daniel Wehner, Leonardo Cavone, et al.

    Selected by Shikha Nayar


    JNK-mediated spindle reorientation in stem cells promotes dysplasia in the aging intestine

    Daniel Hu, Heinrich Jasper

    Selected by Maiko Kitaoka

    ER-to-Golgi trafficking of procollagen in the absence of large carriers.

    Janine McCaughey, Nicola Stevenson, Stephen Cross, et al.

    Selected by Gautam Dey


    Mechanosensitive binding of p120-Catenin at cell junctions regulates E-Cadherin turnover and epithelial viscoelasticity

    K. Venkatesan Iyer, Romina Piscitello-Gómez, Frank Jülicher, et al.

    Selected by Ivana Viktorinová

    A novel mechanism of gland formation in zebrafish involving transdifferentiation of renal epithelial cells and live cell extrusion

    Richard W Naylor, Alan J Davidson

    Selected by Giuliana Clemente


    An intrinsic cell cycle timer terminates limb bud outgrowth

    Joseph Pickering, Kavitha Chinnaiya, Constance A Rich, et al.

    Selected by Ashrifia Adomako-Ankomah


    Fbxw7 is a critical regulator of Schwann cell myelinating potential

    Breanne L Harty, Fernanda Coelho, Sarah D Ackerman, et al.

    Selected by Yen-Chung Chen

    Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene

    Augusto Berrocal, Nicholas C Lammers, Hernan G Garcia, et al.

    Selected by Erik Clark

    TORC1 modulation in adipose tissue is required for organismal adaptation to hypoxia in Drosophila.

    Byoungchun Lee, Elizabeth C Barretto, Savraj S Grewal

    Selected by Sarah Bowling