Menu

Close

Photoperiod sensing of the circadian clock is controlled by ELF3 and GI

Usman Anwer, Amanda Davis, Seth Jon Davis, Marcel Quint

Preprint posted on May 14, 2018 https://www.biorxiv.org/content/early/2018/05/14/321794

ELF3 and GI are essential ZEITNEHMERS to perceive light input into the clock and measure the photoperiod. Mutants fail to regulate photoperiod-responsive growth and development.

Selected by Annika Weimer

Summary

ELF3 and GI are essential ZEITNEHMERS to perceive light input into the clock and measure the photoperiod. Mutants fail to regulate photoperiod-responsive growth and development.

The bigger picture

The circadian clock is an essential time keeping mechanism in plants that allows the organism to synchronize the internal cellular mechanism to the external environment with light as the primary cue perceived by central oscillators. These processes control various activities, many of which have agricultural importance. The circadian clock consists of three essential parts: input, core oscillator and output. Zeitgeber (German for time-givers), deliver external information, such as light and temperature conditions, to Zeitnehmers (German for time-takers) which synchronize the clock with the local environment. The oscillator ensures a 24 h rhythmicity that lasts even in the absence of external cues. Anwer et al. show that ELF3 and GI are not only essential for the oscillator function but also mediating light inputs to the oscillator, making them essential Zeitnehmers. Both genes are conserved in flowering plants representing important breeding targets. This could long-term lead to photoperiod-insensitive crops.

 

The preprint

ELF3 (EARLY FLOWERING 3) and GI (GIGANTEA) are both involved in the regulation of the circadian clock in Arabidopsis. Single mutants of elf3 and gi were studied previously, but a detailed analysis of the double mutant elf3 gi in this preprint revealed new interesting results.

Flowering time

Even though flowering time in single mutants of ELF3 and GI differs from wild type plants, the response to light stimuli is still intact in the single mutant. Anwer et al. showed that this, however, is completely lost in the double mutant elf3 gi and the flowering time is unaffected by the photoperiod. Also, typical expression patterns of flowering time genes, such as CO and FT show reduced fluctuation in elf3 gi.

Growth inhibition

Wild-type hypocotyls elongate in the dark (e.g. in the soil to quickly reach the sunlight), but slow down their growth once they reach the light, a phenomenon known as growth inhibition.  Measuring the hypocotyl length in elf3 gi single and double mutants indicated that there is an additive effect of ELF3 and GI in photoperiodic sensing in controlling elongation. Surprisingly, the authors found that ELF3 might also act as a growth promoting factor, especially under blue light conditions. PIF4, a regulator of hypocotyl growth, is upregulated in the double mutant, explaining the extreme growth phenotype, which is neither light nor clock regulated.

Defects in elf3 gi as a result of malfunctional oscillator?

ELF3 and GI repress growth during night and day, respectively, and both are needed for effective gating of clock-controlled growth and work independent of each other in the circadian clock. Under free running conditions, i.e. a rhythm that is not adjusted to the 24-hour cycle, gi mutants show a compromised but functional clock, however, in elf3 and elf3 gi mutants no rhythm can be observed, hinting toward a dysfunctional oscillator. Interestingly, the oscillator is still responsive to light changes in gi and elf3 with slight changes in expression of major oscillator genes. However, the overall pattern was comparable to wild type. In the elf3 gi double mutant no response to diurnal light signals could be observed.

Future work

What is the overall phenotype of the elf3 gi mutants, under control conditions and the conditions tested in the preprint (on a whole plant level)?

It is interesting to think about photoperiod insensitive crops. How would photoperiod insensitivity affect the yield of crops? Are there some studies about that? What are the dry weight, amount of seeds, leaf size in your Arabidopsis mutants?

Are elf3 gi double mutants more sensitive to stress? And which downstream processes, such as cell divisions, are affected by the malfunctioning oscillator in elf3 gi double mutants?

Tags: circadian clock, plant development

Posted on: 1st June 2018 , updated on: 4th June 2018

Read preprint (1 votes)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    Dynamic Erasure of Random X-Chromosome Inactivation during iPSC Reprogramming

    Adrian Janiszewski, Irene Talon, Juan Song, et al.



    Selected by Sergio Menchero

    MicroRNA-mediated control of developmental lymphangiogenesis

    Hyun Min Jung, Ciara Hu, Alexandra M Fister, et al.



    Selected by Rudra Nayan Das

    Endogenous CRISPR arrays for scalable whole organism lineage tracing

    James Cotterell, James Sharpe



    Selected by Irepan Salvador-Martinez

    Planar differential growth rates determine the position of folds in complex epithelia

    Melda Tozluoğlu, Maria Duda, Natalie J Kirkland, et al.

    AND

    Buckling of epithelium growing under spherical confinement

    Anastasiya Trushko, Ilaria Di Meglio, Aziza Merzouki, et al.



    Selected by Sundar Naganathan

    2

    Establishment of the mayfly Cloeon dipterum as a new model system to investigate insect evolution

    Isabel Almudi, Carlos Martin-Blanco, Isabel Maria Garcia-Fernandez, et al.



    Selected by Ivan Candido-Ferreira

    1

    The Spatio-Temporal Control of Zygotic Genome Activation

    George Gentsch, Nick D. L. Owens, James C. Smith



    Selected by Meng Zhu

    Microtubules stabilize intercellular contractile force transmission during tissue folding



    Selected by Ivana Viktorinová

    Multilevel regulation of the glass locus during Drosophila eye development

    Cornelia Fritsch, F. Javier Bernardo-Garcia, Tim Humberg, et al.



    Selected by Gabriel Aughey

    1

    Lineage tracing on transcriptional landscapes links state to fate during differentiation

    Caleb Weinreb, Alejo E Rodriguez-Fraticelli, Fernando D Camargo, et al.



    Selected by Yen-Chung Chen

    1

    Distinct ROPGEFs successively drive polarization and outgrowth of root hairs

    Philipp Denninger, Anna Reichelt, Vanessa Aphaia Fiona Schmidt, et al.



    Selected by Marc Somssich

    A direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila

    Christopher M Uyehara, Daniel J McKay



    Selected by Natalie Dye

    A metabolic switch from OXPHOS to glycolysis is essential for cardiomyocyte proliferation in the regenerating heart

    Hessel Honkoop, Dennis de Bakker, Alla Aharonov, et al.



    Selected by Andreas van Impel

    1

    Reconstruction of the global neural crest gene regulatory network in vivo

    Ruth M Williams, Ivan Candido-Ferreira, Emmanouela Repapi, et al.



    Selected by Hannah Brunsdon

    Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissue

    Pauline E Jullien, Stefan Grob, Antonin Marchais, et al.



    Selected by Chandra Shekhar Misra

    1

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    2

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Also in the plant biology category:

    Distinct ROPGEFs successively drive polarization and outgrowth of root hairs

    Philipp Denninger, Anna Reichelt, Vanessa Aphaia Fiona Schmidt, et al.



    Selected by Marc Somssich

    Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissue

    Pauline E Jullien, Stefan Grob, Antonin Marchais, et al.



    Selected by Chandra Shekhar Misra

    1

    A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis

    Saiko Yoshida, Alja van der Schuren, Maritza van Dop, et al.



    Selected by Martin Balcerowicz

    1

    The embryonic transcriptome of Arabidopsis thaliana

    Falko Hofmann, Michael A Schon, Michael D Nodine



    Selected by Chandra Shekhar Misra

    1

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    A histidine kinase gene is required for large radius root tip circumnutation and surface exploration in rice

    Kevin R Lehner, Isaiah Taylor, Erin N McCaskey, et al.



    Selected by Martin Balcerowicz

    SOL1 and SOL2 Regulate Fate Transition and Cell Divisions in the Arabidopsis Stomatal Lineage

    Abigail R Simmons, Kelli A Davies, Wanpeng Wang, et al.



    Selected by Martin Balcerowicz

    TTL proteins scaffold brassinosteroid signaling components at the plasma membrane to optimize signal transduction in plant cells

    Vitor Amorim-Silva, Alvaro Garcia-Moreno, Araceli G Castillo, et al.



    Selected by Martin Balcerowicz

    1

    Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses

    Kristina Zahonova, Zoltan Fussy, Erik Bircak, et al.



    Selected by Ellis O'Neill

    1

    Widespread inter-individual gene expression variability in Arabidopsis thaliana

    Sandra Cortijo, Zeynep Aydin, Sebastian Ahnert, et al.



    Selected by Martin Balcerowicz

    Photoperiod sensing of the circadian clock is controlled by ELF3 and GI

    Usman Anwer, Amanda Davis, Seth Jon Davis, et al.



    Selected by Annika Weimer

    PIN7 auxin carrier is a terminator of radial root expansion in Arabidopsis thaliana

    Michel Ruiz Rosquete, Jurgen Kleine-Vehn

    AND

    PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana

    Elena Feraru, Mugurel I. I Feraru, Elke Barbez, et al.



    Selected by Erin Sparks

    The expa1-1 mutant reveals a new biophysical lateral root organogenesis checkpoint

    Priya Ramakrishna, Graham A. Rance, Lam D. Vu, et al.



    Selected by Annika Weimer

    1

    Close