Menu

Close

A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells

Elsy Buitrago-Delgado, Elizabeth Schock, Kara Nordin, Carole LaBonne

Preprint posted on July 13, 2018 https://www.biorxiv.org/content/early/2018/07/13/359752

The neural crest, the last frontier of stemness and pluripotency of the developing vertebrate embryo, is maintained purposefully and distinctly by SoxE transcription factors.

Selected by Amanda Haage

Categories: developmental biology

Why This Is Cool – This story is fundamental developmental biology at it’s finest. The authors set out to answer a seemingly facile question – as development progresses, why does the vertebrate embryo switch between different transcriptions factors that seem to do the same thing? SoxB1 transcription factors (Sox1-3) maintain the stem cell state in the early blastula and in embryonic stem cells. As the embryo transitions to being more defined and differentiated, the neural crest cells represent one of the last cell populations holding onto a stem cell-like state and pluripotency. Though neural crest cells and blastula cells have many similarities, they express different Sox transcription factors, with the neural crest transitioning to expressing SoxE factors (Sox8-10). The authors demonstrate this through a beautiful sequence of in situs of Xenopus embryos where you can see the gradual restriction of Sox2&3expression to the neural plate, while Sox9&10 becomes upregulated specifically in the neural crest (Figure1).

Figure 1. Expression of SoxB1 and SoxE factors in Xenopus embryos. (A) In situ hybridization examining Sox2 and Sox3 expression in wildtype Xenopus embryos collected between blastula and late neurula stages. (B) In situ hybridization examining Sox8, Sox9, and Sox10 expression in wildtype Xenopus embryos collected between blastula and late neurula stages.

 

The authors then complete a series of in vivo rescue experiments and functional differentiation experiments to test what redundancy or specificity exists between the SoxB1 and SoxE factors. First, early expression of SoxE in the blastula inhibits expression of pluripotent cell markers. Second, forced expression of SoxB1 in the neural crest downregulates specific neural crest markers. These results are consistent with their spatial expression patterns, but how do they affect the actual function of pluripotency, i.e. the ability of cells to differentiate into multiple lineages? Here, they used explant cultures of blastula cells and measured the induction of mesoderm markers over time. Overexpression of both SoxB1 and SoxE factors inhibited mesoderm differentiation, but this appears to be a concentration-dependent response, as both SoxB1 and SoxE factors could also rescue mesoderm differentiation in SoxB1 depleted explants. This means that both SoxB1 and SoxE can maintain pluripotency, but their expression is still spatially separated, why? The authors hypothesize that the different transcription factors prepare the cells to adopt different lineages, namely SoxB1 for neural induction and SoxE for neural crest, following their spatial expression patterns. Further utilizing their explant system to test functional differentiation, they are able to confirm this hypothesis. Only SoxB1 factors can rescue neural marker expression and only SoxE factors can rescue neural crest marker expression.

Why I Selected It – I started my career studying how cells move in the context of cancer cell metastasis. This field is huge and obviously very important to human health, but I think it collectively forgets that cells don’t only move when they aren’t supposed to. Developmental biology was studying how cells move in vivo long before it became a major target of various cancer therapies. We still have a lot to learn about when, why, and how cells move in vivo and this is why the neural crest is one of my new scientific loves. The neural crest derivates migrate huge distances in development, ending up at specific places at the end, not unlike cancer cells undergoing metastasis. If we can better understand how cells move in the massively complex context of animal development, maybe we can better understand how cells move in cancer. This is why I’m trying to learn as much as I can about the neural crest.

Open Questions –

  1. Post-translational modification alters the function of SoxE factors. Is there a similar mechanism for SoxB1 factors? If not, could this specialty also contribute to why SoxE factors are necessary? Would you get different results if you block the post-translational modification of SoxE factors in your experiments?
  2. Is the somewhat overlapping function of SoxB1 and SoxE factors also represented in their sequence or structure similarities? Since the Sox family was created through many duplication events are these two sub-classes particularly closely related?
  3. For the in vivo rescue experiments, how severe are the defects? Can you still get a functional adult organism with early expression of SoxE or forced expression of SoxB1 in the neural crest?

Related References –

  1. Sox family of transcription factors in controlling pluripotency
    1. Takahashi K. & Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell (2006). 25;126(4):663-76.
  2. Neural crest cells and blastula cells have similar gene expression profiles
    1. Buitrago-Delgado E., Nordin K., Rao A., Geary L., & LaBonne C. Shared pluripotency programs suggest derivation of vertebrate neural crest from blastula cells. Science (2015). 19; 348(6241): 1332–1335.
  3. Explant culture system used
    1. Ariizumi T. & Asashima M. In vitro induction systems for analyses of amphibian organogenesis and body patterning. Int J. Dev Biol (2001). 45(1):273-9.

Tags: neural crest, pluripotency, stem cell, xenopus

Posted on: 2nd August 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Diana Pinheiro

    Unlimited genetic switches for cell-type specific manipulation

    Jorge Garcia-Marques, Ching-Po Yang, Isabel Espinosa-Medina, et al.



    Selected by Rafael Almeida

    1

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Paul Gerald L. Sanchez and Stefano Vianello

    Symmetry breaking in the embryonic skin triggers a directional and sequential front of competence during plumage patterning

    Richard Bailleul, Carole Desmarquet-Trin Dinh, Magdalena Hidalgo, et al.



    Selected by Alexa Sadier

    A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis

    Saiko Yoshida, Alja van der Schuren, Maritza van Dop, et al.



    Selected by Martin Balcerowicz

    1

    Suppressor of Fused controls perinatal expansion and quiescence of future dentate adult neural stem cells

    Hirofumi Noguchi, Jesse Garcia Castillo, Kinichi Nakashima, et al.



    Selected by Ekaterina Dvorianinova

    The embryonic transcriptome of Arabidopsis thaliana

    Falko Hofmann, Michael A Schon, Michael D Nodine



    Selected by Chandra Shekhar Misra

    1

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    A Scube2-Shh feedback loop links morphogen release to morphogen signaling to enable scale invariant patterning of the ventral neural tube

    Zach Collins, Kana Ishimatsu, Tony Tsai, et al.



    Selected by Teresa Rayon

    1

    Epiblast formation by Tead-Yap-dependent expression of pluripotency factors and competitive elimination of unspecified cells

    Masakazu Hashimoto, Hiroshi Sasaki



    Selected by Sarah Bowling, Teresa Rayon
    Close