Menu

Close

The Trithorax group protein dMLL3/4 instructs the assembly of the zygotic genome at fertilization

Pedro Prudêncio, Leonardo G. Guilgur, João Sobral, Jörg D. Becker, Rui Gonçalo Martinho, Paulo Navarro-Costa

Preprint posted on January 04, 2018 https://www.biorxiv.org/content/early/2018/01/04/242008

The chromatin remodeling factors dMLL3/4 regulate a small gene repertoire important for embryonic fate during fly oocyte development.

Selected by Carmen Adriaens

Categories: developmental biology

Global context and preprint summary

Oocyte-to-embryo (O-to-E) transition requires the assembly of two completely differently configured haploid genomes. For the pronuclei to merge into a single zygotic genome after fertilization, the parental chromatin needs to be extensively remodeled. A previous study has shown that the Trithorax-group chromatin remodeling proteins MLL3 and MLL4 are essential for the zygote to reprogram to pluripotency, but are dispensable for the maintenance of cell identity. In the current work, the authors find that the Drosophila dMLL3/4 proteins play a role in O-to-E transition through their chromatin remodeling and/or gene regulatory capacities. They identify a novel gene, IDGF4, which is required for O-to-E and is under the transcriptional control of dMLL3/4.

My favorite experiment in this study:

Although it is known that MLL3/4 was needed to establish the pluripotent cell state, the timing of this requirement has been unclear. To test this, the authors depleted these proteins specifically in the fly germline, and counted egg-hatching events after fertilization. Eggs from dMLL3/4 depleted females did not hatch due to a failure to enter embryogenesis at the first mitotic division, whereas depletion of these proteins in males did not affect the embryogenesis process. I think this experiment is great because it shows conclusively that maternally-provided dMLL3/4 is necessary before O-to-E can occur upon fertilization.

What I like about this work:

Despite our relatively broad knowledge on embryogenesis, still many aspects of this intriguing process remain elusive. This study from Prudêncio et al. strengthens the emerging concept that chromatin remodeling factors are important to reshape the genomic and transcriptomic landscapes in each of the embryogenesis stages independently. I like this study because it does not only pinpoint the exact timing of a known phenotype, but it also provides the first mechanistic insights into its establishment through the identification of a maternally encoded factor acting on the paternal genome.

 

Figure

The figure shows the model proposed by the authors of how the dMLL3/4-dependent gene expression signature might be necessary for the cell to undergo oocyte-to-embryo transition and accomplish the assembly of the zygotic genome.
(From preprint, made available under a CC-BY-NC-ND 4.0 International license).

 

Tags: dmll3/4, drosophila, maternal effect genes, oocyte-to-embryo transition

Posted on: 16th February 2018

Read preprint (1 votes)




  • 1 comment

    2 months

    Paulo Navarro-Costa

    Peer-reviewed version is out: http://embor.embopress.org/content/early/2018/07/19/embr.201845728

    Same main message as the pre-print.




    2

    Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development

    Nicole Traeber, Klemens Uhlmann, Salvatore Girardo, et al.



    Selected by Jacky G. Goetz

    millepattes micropeptides are an ancient developmental switch required for embryonic patterning

    Suparna Ray, Miriam I Rosenberg, Hélène Chanut-Delalande, et al.



    Selected by Erik Clark

    Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

    Kerstin Klinkert, Nicolas Levernier, Peter Gross, et al.

    AND

    Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

    Sachin Kotak, Sukriti Kapoor



    Selected by Giuliana Clemente

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.



    Selected by Coert Margadant

    SOL1 and SOL2 Regulate Fate Transition and Cell Divisions in the Arabidopsis Stomatal Lineage

    Abigail R Simmons, Kelli A Davies, Wanpeng Wang, et al.



    Selected by Martin Balcerowicz

    Analysis of the role of Nidogen/entactin in basement membrane assembly and morphogenesis in Drosophila

    Jianli Dai, Beatriz Estrada, Sofie Jacobs, et al.



    Selected by Nargess Khalilgharibi

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    Simultaneous production of diverse neuronal subtypes during early corticogenesis

    Elia Magrinelli, Robin Jan Wagener, Denis Jabaudon



    Selected by Boyan Bonev

    1

    mRNA localisation in endothelial cells regulates blood vessel sprouting

    Guilherme Costa, Nawseen Tarannum, Shane Herbert



    Selected by Andreas van Impel

    LADL: Light-activated dynamic looping for endogenous gene expression control

    Mayuri Rege, Ji Hun Kim, Jacqueline Valeri, et al.



    Selected by Ivan Candido-Ferreira

    Quantitative, real-time, single cell analysis in tissue reveals expression dynamics of neurogenesis

    Cerys S Manning, Veronica Biga, James Boyd, et al.



    Selected by Teresa Rayon

    The cis-regulatory logic underlying abdominal Hox-mediated repression versus activation of regulatory elements in Drosophila



    Selected by Clarice Hong

    1

    Optogenetic dissection of mitotic spindle positioning in vivo

    Lars-Eric Fielmich, Ruben Schmidt, Daniel J Dickinson, et al.



    Selected by Angika Basant

    1

    Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo.

    Jonathan B Michaux, Francois B Robin, William M McFadden, et al.



    Selected by Sundar Naganathan

    A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells

    Elsy Buitrago-Delgado, Elizabeth Schock, Kara Nordin, et al.



    Selected by Amanda Haage

    Moving beyond P values: Everyday data analysis with estimation plots

    Joses Ho, Tayfun Tumkaya, Sameer Aryal, et al.



    Selected by Gautam Dey

    1

    Close