Close

An intrinsic cell cycle timer terminates limb bud outgrowth

Joseph Pickering, Kavitha Chinnaiya, Constance A Rich, Patricia Saiz-Lopez, Marian A Ros, Matthew Towers

Posted on: 14 July 2018

Preprint posted on 6 April 2018

Article now published in eLife at http://dx.doi.org/10.7554/elife.37429

How is the final size of a limb determined? Pickering et al. discover that chick limb buds have an intrinsic BMP signaling-dependent cell cycle regulator which slows down cell proliferation rates to restrict the size of the embryonic limb.

Selected by Ashrifia Adomako-Ankomah

Categories: developmental biology

Background
Limb development is one of the most fascinating aspects of morphogenesis. In current models of limb bud specification, signals from the mesoderm and the overlying apical ectodermal ridge (AER) work together to regulate limb patterning. Though the proximal structures of the limb are known to be specified extrinsically by signals from the trunk of the embryo (Cooper et al., 2011), there is some ambiguity over how the distal limb structures are specified.

In their previous work, the authors propose that the distal structures of the chick forelimb are specified by an intrinsic clock. This intrinsic signal is activated in the distal mesenchyme cells as they proliferate and move out of the region of influence of proximal signals (Saiz-Lopez et al., 2015). In later work, they show that the slowdown of cell proliferation which marks the end of limb specification and outgrowth occurred independently of extrinsic signals, indicating the presence of an intrinsic mechanism (Saiz-Lopezet al., 2017). What, then, is the nature of this intrinsic signal?

Interesting findings
The main method used in this preprint was the grafting of distal mesoderm tissue from wing limb buds of older GFP-expressing chicken embryos into the distal mesoderm of limb buds of younger non-labeled embryos. After a 24-hour incubation, the GFP-labelled grafts were collected and analyzed by RNA-seq. This method was used to characterize the transcriptome of the grafts in comparison to donor and host embryo limb buds. Results showed that 55 genes kept the donor expression profile while 99 genes were reset to match the host expression profile, indicating a significant environmental influence on gene expression.

The authors first confirmed the presence of an intrinsic signal. It was important to show that cell proliferation did not just appear to be independent of an extrinsic signal due to a lack of epithelial-to-mesenchymal signaling between older limb bud grafts and the AER of host embryos. RNA-seq data showed that the expression levels of BMP4, various FGF ligands and the BMP antagonist Grem1, which is known to maintain the AER, were all reset to match the host embryo mesoderm. Additionally, the BMP target pSMAD1/5/9 was expressed at higher levels specifically in the region of the AER overlying the graft, indicating functional epithelial-to-mesenchymal signaling between the graft and the overlying ectoderm.

When comparing RNA-seq data sets, the authors found that the expression levels of BMP2 and BMP7, which normally increase from younger to older limb buds, were not reset to match the host embryo mesoderm. These two genes are known to restrict outgrowth during normal limb development by inhibiting FGF signaling. The expression of known BMP targets in grafts was also maintained at donor embryo levels. To confirm the role of BMPs in regulating the intrinsic cell proliferation timer, beads soaked with synthetic BMP2 and implanted into the mesoderm of younger limb buds were shown to cause a slowdown in cell proliferation.

Pickering and colleagues end by proposing a model in which the BMP antagonist Grem1 represses BMP signaling at early stages of limb bud development. This maintains the AER and a high rate of cell proliferation. The AER plays a permissive role in supporting cell proliferation distally but does not have an instructive role. As the limb develops and the distal cells move out of the range of influence of proximal signals, there is a switch from extrinsic to intrinsic regulation, marked by an increase in BMP signaling. This overcomes the effects of BMP antagonists and slows down and eventually stops cell proliferation distally (preprint Fig.5). Once this is done, BMP signaling inhibits FGF signaling in the AER and causes it to regress, marking the completion of wing patterning.

What I like about this preprint
This preprint has all the classic elements of developmental biology research: an age-old unanswered question, divergent points of view and an elegant set-up, producing results which offer another piece of a big picture while telling us once again that the process of morphogenesis is much more complex than we think. Additionally, the methods are written in such exquisite detail that I almost want to get myself some chicken embryos and conduct a few of these experiments.

Follow-up question
As chicken forelimbs and hindlimbs are significantly different morphologically, it would be interesting to find out from the authors which parts of the mechanisms described here may be conserved between these two kinds of limb buds. A comparison of the mechanisms of specification and the gene regulatory networks running in the forelimb and hindlimb buds during development would provide more information on the regulation of limb morphogenesis in general.

References
1) Cooper, K. L., Hu, J. K-H., ten Berge, D., Fernandez-Teran, M., Ros, M. A., and Tabin, C. J. (2011). Initiation of proximal-distal patterning in the vertebrate limb by signals and growth. Science 332, 1083-1086.

2) Saiz-Lopez, P., Chinnaiya, K., Campa, V. M., Delgado, I., Ros, M.A., and Towers, M. (2015). An intrinsic timer specifies distal structures of the vertebrate limb. Nature Communications 6, 8108.

3) Saiz-Lopez, P., Chinnaiya, K., Towers, M. and Ros, M. A. (2017). Intrinsic properties of limb bud cells can be differentially reset. Development 144, 479-486.

Tags: bmp signaling, cell proliferation, chick, limb development, morphogenesis

Read preprint (No Ratings Yet)

Author's response

Dr. Matthew Towers shared

I think it is a good question and I think the mechanism could apply to the hindlimb because its development generally involves the same regulators as the forelimb. However, we can not say for sure without doing the experiments. Also there is good evidence in the chick forelimb that intrinsic timing mechanisms start when proximal signals (thought to be based on retinoic acid) are depleted from the early bud. However, retinoic acid does not appear to play the same role in the hindlimb so there could be differences.

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the developmental biology category:

Germplasm stability in zebrafish requires maternal Tdrd6a and Tdrd6c

Alessandro Consorte, Yasmin El Sherif, Fridolin Kielisch, et al.

Selected by 13 December 2024

Justin Gutkowski

Developmental Biology

Cellular signalling protrusions enable dynamic distant contacts in spinal cord neurogenesis

Joshua Hawley, Robert Lea, Veronica Biga, et al.

Selected by 15 November 2024

Ankita Walvekar

Developmental Biology

Actin-based deformations of the nucleus control multiciliated ependymal cell differentiation

Marianne Basso, Alexia Mahuzier, Syed Kaabir Ali, et al.

Selected by 30 October 2024

Ryan Harrison

Developmental Biology

preLists in the developmental biology category:

BSDB/GenSoc Spring Meeting 2024

A list of preprints highlighted at the British Society for Developmental Biology and Genetics Society joint Spring meeting 2024 at Warwick, UK.

 



List by Joyce Yu, Katherine Brown

GfE/ DSDB meeting 2024

This preList highlights the preprints discussed at the 2024 joint German and Dutch developmental biology societies meeting that took place in March 2024 in Osnabrück, Germany.

 



List by Joyce Yu

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

preLights peer support – preprints of interest

This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.

 



List by preLights peer support

The Society for Developmental Biology 82nd Annual Meeting

This preList is made up of the preprints discussed during the Society for Developmental Biology 82nd Annual Meeting that took place in Chicago in July 2023.

 



List by Joyce Yu, Katherine Brown

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Alumni picks – preLights 5th Birthday

This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.

 



List by Sergio Menchero et al.

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.

 



List by Nadja Hümpfer et al.

2nd Conference of the Visegrád Group Society for Developmental Biology

Preprints from the 2nd Conference of the Visegrád Group Society for Developmental Biology (2-5 September, 2021, Szeged, Hungary)

 



List by Nándor Lipták

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

EMBL Conference: From functional genomics to systems biology

Preprints presented at the virtual EMBL conference "from functional genomics and systems biology", 16-19 November 2020

 



List by Jesus Victorino

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.

 



List by Alex Eve

Society for Developmental Biology 79th Annual Meeting

Preprints at SDB 2020

 



List by Irepan Salvador-Martinez, Martin Estermann

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

Planar Cell Polarity – PCP

This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.

 



List by Ana Dorrego-Rivas

Cell Polarity

Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.

 



List by Yamini Ravichandran

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20

 



List by Maiko Kitaoka et al.

3D Gastruloids

A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells). Updated until July 2021.

 



List by Paul Gerald L. Sanchez and Stefano Vianello

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

EDBC Alicante 2019

Preprints presented at the European Developmental Biology Congress (EDBC) in Alicante, October 23-26 2019.

 



List by Sergio Menchero et al.

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

 



List by Dey Lab

SDB 78th Annual Meeting 2019

A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.

 



List by Alex Eve

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.

 



List by Rob Hynds

Young Embryologist Network Conference 2019

Preprints presented at the Young Embryologist Network 2019 conference, 13 May, The Francis Crick Institute, London

 



List by Alex Eve

Pattern formation during development

The aim of this preList is to integrate results about the mechanisms that govern patterning during development, from genes implicated in the processes to theoritical models of pattern formation in nature.

 



List by Alexa Sadier

BSCB/BSDB Annual Meeting 2019

Preprints presented at the BSCB/BSDB Annual Meeting 2019

 



List by Dey Lab

Zebrafish immunology

A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.

 



List by Shikha Nayar
Close