Menu

Close

Cell-nonautonomous local and systemic responses to cell arrest enable long-bone catch-up growth

Alberto Rosello-Diez, Linda Madisen, Sebastien Bastide, Hongkui Zeng, Alexandra L Joyner

Preprint posted on December 23, 2017 https://www.biorxiv.org/content/early/2017/12/23/218487

How is symmetric growth of paired limbs maintained in the mouse embryo? Partial arrest of proliferation in one limb induces local compensatory proliferation and global reduction in body size.

Selected by Anna Kicheva

Categories: developmental biology

Background

Lewis Wolpert, among others, has noted that it is remarkable how paired organs, such as the limbs, grow in precise symmetry (see https://doi.org/10.1371/journal.pbio.1000477). Even more remarkable is that this coordination is restored upon unilateral growth insult of the limb, so that the left and right limbs end up with similar sizes at birth. The study of Alberto Rosello-Diez, Alexandra Joyner and colleagues provides new insight into how this happens.

Key results

The authors use a clever genetic approach to arrest cell proliferation of a fraction of chrondrocytes within the left limb of mouse embryos. This caused compensatory overproliferation of the non-arrested neighboring chrondrocytes. Remarkably, this perturbation also affected growth of the rest of the body, causing the right limb to become 10% smaller than in control embryos. Thus, both intrinsic and extrinsic mechanisms regulate limb growth. The approach opens a new way forward to investigating what these mechanisms are at the molecular level. The authors link the limb-intrinsic compensation to sensing cell density within the growth plate, and the systemic effect – to IGF secreted by the placenta.

Open questions

Further studies will be needed to find out: what is the “alarm” signal sent by the perturbed limb? Is the same signal involved in the intrinsic and systemic mechanisms? How do mechanical vs biochemical signals contribute to proliferation control in this system?

 

preLighter Natalie Dye has also highlighted this preprint – check out her highlight here.

 

Posted on: 15th February 2018 , updated on: 20th February 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    A Scube2-Shh feedback loop links morphogen release to morphogen signaling to enable scale invariant patterning of the ventral neural tube

    Zach Collins, Kana Ishimatsu, Tony Tsai, et al.



    Selected by Teresa Rayon

    1

    Epiblast formation by Tead-Yap-dependent expression of pluripotency factors and competitive elimination of unspecified cells

    Masakazu Hashimoto, Hiroshi Sasaki



    Selected by Sarah Bowling, Teresa Rayon

    Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord

    Julien Delile, Teresa Rayon, Manuela Melchionda, et al.



    Selected by Reena Lasrado

    1

    The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner

    Federico Germani, Daniel Hain, Denise Sternlicht, et al.



    Selected by Rohan Khadilkar

    Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila

    Charles A Seller, Chun-Yi Cho, Patrick H O'Farrell



    Selected by Gabriel Aughey

    A histidine kinase gene is required for large radius root tip circumnutation and surface exploration in rice

    Kevin R Lehner, Isaiah Taylor, Erin N McCaskey, et al.



    Selected by Martin Balcerowicz

    Actomyosin-driven tension at compartmental boundaries orients cell division independently of cell geometry in vivo

    Elena Scarpa, Cedric Finet, Guy Blanchard, et al.



    Selected by Ivana Viktorinová

    Molecular organization of integrin-based adhesion complexes in mouse Embryonic Stem Cells

    Shumin Xia, Evelyn K.F. Yim, Pakorn Kanchanawong

    AND

    Superresolution architecture of pluripotency guarding adhesions

    Aki Stubb, Camilo Guzmán, Elisa Närvä, et al.



    Selected by Nicola Stevenson, Amanda Haage

    Transcriptional initiation and mechanically driven self-propagation of a tissue contractile wave during axis elongation

    Anais Bailles, Claudio Collinet, Jean-Marc Philippe, et al.



    Selected by Sundar Naganathan

    1

    Revealing the nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy

    Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, et al.



    Selected by Gautam Dey

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis

    Min Zhu, Hirotaka Tao, Mohammad Samani, et al.



    Selected by Natalie Dye

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Synergy with TGFβ ligands switches WNT pathway dynamics from transient to sustained during human pluripotent cell differentiation

    Joseph Massey, Yida Liu, Omar Alvarenga, et al.



    Selected by Pierre Osteil

    1

    Close