Menu

Close

Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene

Augusto Berrocal, Nicholas C Lammers, Hernan G Garcia, Michael B Eisen

Preprint posted on June 11, 2018 https://www.biorxiv.org/content/early/2018/06/11/335901

Falling into lines: @guberrocal, @HernanGGarcia and @mbeisen use live imaging and computational modelling to reveal the transcriptional dynamics underlying the emergence of the eve stripes in the Drosophila embryo

Selected by Erik Clark

Background

Segmentation gene expression in the Drosophila blastoderm has long been used as a test case for unravelling mechanisms of transcriptional regulation. Over the years, one of the most scrutinised genes has been even-skipped (eve), a pair-rule gene expressed in seven regular stripes. Although it was originally assumed that the regularity of these stripes must stem from an underlying uniformity of mechanism (e.g. Turing pattern formation), it was quickly discovered that the various eve stripes are actually established piecemeal, from 5 different “stripe-specific” enhancer elements. Today, these enhancers are among the best studied in the animal kingdom.

In recent years, the MS2-MCP system for live imaging has shone a light on the dynamicity of transcriptional regulation, again using Drosophila blastoderm genes such as eve as study cases. Transgenically inserting MS2 stem-loop repeats into a coding sequence causes maternally deposited and fluorescently tagged MCP protein to be concentrated at the gene locus during active transcription, allowing one to directly visualise transcriptional bursts in individual nuclei over time. However, in order to determine how exactly transcription is regulated across time and space to pattern developmental gene expression, it is first necessary to overcome the problem of inferring the promoter state history of each nucleus from its temporal intensity profile (an aggregate pattern which is determined by the cumulative number of nascent transcripts present at the transcribing locus over time).

 

Key Findings

Berroccal and colleagues constructed an eve MS2 reporter transgene, and collected 11 high-resolution movies of blastoderm eve expression, each focused on a different set of stripes. They segmented the movies to get the locations and intensity profiles of ~3,000 individual nuclei, then registered all this data together to produce an overall picture of eve transcription along the anteroposterior axis during and after stripe formation.

The authors then ran the intensity traces through a custom hidden Markov model to infer the history of transcriptional bursts in each nucleus (see the companion preprint in Related Research, below). A simple two-state (ON/OFF) modelling framework is commonly used to characterise transcriptional regulation at the promoter level, characterised by three parameters, which determine (1) average burst frequency, (2) average burst duration, and (3) the rate at which new transcripts are initialised during a burst. The authors found that eve transcription is regulated predominantly at the level of burst frequency (increasing it within stripes, and decreasing it between stripes), while the other two parameter values did not seem to change much. They also found that the different eve stripes are regulated similarly at the promoter level, even though they are generated by different enhancer elements and patterned by different sets of transcription factors.

Reassuringly, the tissue-level picture of eve expression yielded by the analysis was broadly in line with previous quantitative descriptions derived from large numbers of fixed samples. However, the authors were able to put more precise timings on the resolution of individual stripes, and more accurately determine the magnitude of the posterior to anterior shifts undertaken by the eve stripes after they form. Overall, this study underlines the extremely dynamic nature of eve expression within the blastoderm – as the authors stress, “at no point does eve approach anything even remotely like a steady state”.

 

Kymograph of eve transcription along the anteroposterior axis over time; from Figure 3B of the preprint

 

Significance

We are going to see many more MS2 movies in developmental biology over the coming years. This windfall of live imaging data will need to be analysed rigorously, perhaps using a similar framework to the one laid out here. This preprint therefore represents an important technical development. It also represents a laudable example of Open Science best practise: all datasets are well-documented and available in an online labbook, and Michael Eisen even wrote a great explainer thread for the project on Twitter: https://twitter.com/mbeisen/status/1002430064225480704

Recently, Hernan Garcia and colleagues revealed a complementary live imaging technology (LlamaTags), which allows live imaging of transcription factors. This means that it is now possible to analyse both halves of the equation: we can characterise transcriptional dynamics at the single cell level, as seen in this preprint, but also relate these outputs to the changing concentrations of key regulatory proteins within these same cells. It seems that old friends like even-skipped will have much to teach us for many years to come.

 

Related Research

Lammers NC, Galstyan V, Reimer A, Medin SA, Wiggins CH, Garcia HG (2018) Binary transcriptional control of pattern formation in development. bioRxiv doi: 10.1101/335919

Bothma JP, Norstad MR, Alamos S, Garcia HG (2018) LlamaTags: a versatile tool to image transcription factor dynamics in live embryos. Cell 173 1810-22

Bothma JP, Garcia HG, Esposito E, Schlissel G, Gregor T, Levine M (2014) Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. PNAS 111 10598-10603

Tags: drosophila, even-skipped, live-imaging, ms2, patterning, transcription

Posted on: 10th July 2018 , updated on: 11th July 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the biophysics category:

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    Central spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B

    Che-Hang Yu, Stefanie Redemann, Hai-Yin Wu, et al.



    Selected by Federico Pelisch

    1

    Mechanical Stretch Kills Transformed Cancer Cells

    Ajay Tijore, Mingxi Yao, Yu-Hsiu Wang, et al.



    Selected by Joseph Jose Thottacherry

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

    Simao Coelho, Jongho Baek, Matthew S Graus, et al.



    Selected by Lars Hubatsch

    Phase transition and amyloid formation by a viral protein as an additional molecular mechanism of virus-induced cell toxicity

    Edoardo Salladini, Claire Debarnot, Vincent Delauzun, et al.



    Selected by Tessa Sinnige

    Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

    Simao Coelho, Jongho baek, Matthew S Graus, et al.



    Selected by Sam Barnett

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy

    Carlo Bevilacqua, Héctor Sánchez Iranzo, Dmitry Richter, et al.



    Selected by Stephan Daetwyler

    1

    Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex

    Diego Gauto, Leandro Estrozi, Charles Schwieters, et al.



    Selected by Reid Alderson

    1

    Structure of a cytochrome-based bacterial nanowire

    David J Filman, Stephen F Marino, Joy E Ward, et al.



    Selected by Amberley Stephens

    Strong preference for autaptic self-connectivity of neocortical PV interneurons entrains them to γ-oscillations

    Charlotte Deleuze, Gary S Bhumbra, Antonio Pazienti, et al.



    Selected by Mahesh Karnani

    Retrieving High-Resolution Information from Disordered 2D Crystals by Single Particle Cryo-EM

    Ricardo Righetto, Nikhil Biyani, Julia Kowal, et al.



    Selected by David Wright

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    2

    The structural basis for release factor activation during translation termination revealed by time-resolved cryogenic electron microscopy

    Ziao Fu, Gabriele Indrisiunaite, Sandip Kaledhonkar, et al.



    Selected by David Wright

    Also in the developmental biology category:

    Lineage tracing on transcriptional landscapes links state to fate during differentiation

    Caleb Weinreb, Alejo E Rodriguez-Fraticelli, Fernando D Camargo, et al.



    Selected by Yen-Chung Chen

    1

    Distinct ROPGEFs successively drive polarization and outgrowth of root hairs

    Philipp Denninger, Anna Reichelt, Vanessa Aphaia Fiona Schmidt, et al.



    Selected by Marc Somssich

    A direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila

    Christopher M Uyehara, Daniel J McKay



    Selected by Natalie Dye

    A metabolic switch from OXPHOS to glycolysis is essential for cardiomyocyte proliferation in the regenerating heart

    Hessel Honkoop, Dennis de Bakker, Alla Aharonov, et al.



    Selected by Andreas van Impel

    1

    Reconstruction of the global neural crest gene regulatory network in vivo

    Ruth M Williams, Ivan Candido-Ferreira, Emmanouela Repapi, et al.



    Selected by Hannah Brunsdon

    Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissue

    Pauline E Jullien, Stefan Grob, Antonin Marchais, et al.



    Selected by Chandra Shekhar Misra

    1

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Diana Pinheiro

    Unlimited genetic switches for cell-type specific manipulation

    Jorge Garcia-Marques, Ching-Po Yang, Isabel Espinosa-Medina, et al.



    Selected by Rafael Almeida

    1

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Paul Gerald L. Sanchez and Stefano Vianello

    1

    Symmetry breaking in the embryonic skin triggers a directional and sequential front of competence during plumage patterning

    Richard Bailleul, Carole Desmarquet-Trin Dinh, Magdalena Hidalgo, et al.



    Selected by Alexa Sadier

    A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis

    Saiko Yoshida, Alja van der Schuren, Maritza van Dop, et al.



    Selected by Martin Balcerowicz

    1

    Close