Close

ATAT1-enriched vesicles promote microtubule acetylation via axonal transport

Aviel Even, Giovanni Morelli, Chiara Scaramuzzino, Ivan Gladwyn-Ng, Romain Le Bail, Michal Shilian, Stephen Freeman, Maria M Magiera, Jijumon AS, Brigitte Malgrange, Bert Brone, Paula Dietrich, Ioannis Dragatsis, Carsten Janke, Frederic Saudou, Miguel Weil, Laurent Nguyen

Preprint posted on 6 February 2019 https://www.biorxiv.org/content/10.1101/542464v1

Article now published in Science Advances at http://dx.doi.org/10.1126/sciadv.aax2705

Even et al. look at how vesicles grease their way to faster transport by acetylating the microtubules on which they're travelling

Selected by Stephen Royle

Categories: cell biology

Background

Microtubules are frequently described as a transport network: the railroads of the cell. What has become clear in the last few years is that far from being boring static tracks that the analogy suggests, microtubules are plastic. Of course we knew that microtubules are dynamic at their ends, but what we’re beginning to understand is that each microtubule lattice is deformable and modifiable in all sorts of new and interesting ways.

Key Findings

The focus of the preprint is to look at transport on microtubules in neuronal systems. What the authors discover is that modification of the microtubules (by acetylation) alters transport, and that the modification is driven by the cargo itself.

Even et al. describe that transport on acetylated microtubules is faster. They show using neurons from Atat1 knockout mice (Atat1 is a tubulin acetylase), that transport of lysosomes and mitochondria is impaired. Using knockdown of Atat1 or Atat2 in motor neurons in Drosophila larvae, they also see reduced mobility of vesicles marked with synaptotagmin-GFP. Measurements in either mouse or fly systems reveal that anterograde and retrograde transport is sensitive to microtubule acetylation. The authors can purify tubulin from Atat1 KO mice and in vitro reconstitution of motility using this material also shows reduced transport. The authors could confirm the lack of acetylation and normal amounts of other tubulin modifications. This is important because a weakness of knockout studies in mice is that compensation for the loss of a gene can result in other changes which may conceal – or in this case underlie – a phenotype.

The authors analysed the proteome of a fraction enriched in vesicular membrane and found comparatively more ATAT1. This suggests that ATAT1 could be hitching a ride on vesicles, but how does it get there? It had previously been reported that ATAT1 can interact with the clathrin adaptor AP-2 and, while clathrin and adaptors were also enriched, the ATAT1 found in mouse brain extracts corresponds to isoforms of ATAT1 which lack the AP-2 binding region. This is an important point because the majority of vesicular cargo transported in axons is likely to be uncoated. The authors probed the region of ATAT1 that was required for vesicle binding. Truncation of the C-terminus to a 1-242 fragment or shorter did not bind to vesicles. This experiment doesn’t nail how ATAT1 binds to vesicles but certainly confirms that the short isoforms that are detected in mouse brain are capable of binding vesicular membrane in the absence of an AP-2/clathrin coat.

Finally, the authors test the idea that acetylation happens during transport. They present some evidence that this is the case and they also describe transport throughput in neurons being increased, which is consistent with the idea that acetylation speeds up transport.

 

Working model of the findings from Even et al. showing ATAT1 entering the microtubule to acetylate tubulin. Reproduced from Figure 7. of the preprint with permission from the authors.

 

What I like about this work

There’s been a lot of hype around “the tubulin code”, which is the idea that tubulin modifications can alter the properties and behaviour of microtubule-dependent processes. While there have been some clear examples of tubulin modifications altering function (e.g. acetylated microtubules in the mitotic spindle), there are some observations which are more difficult to reconcile. Relevant to this paper, acetylation occurs on the inside of the microtubule. How does the acetylase get in? Why do motors running on the outer surface of the microtubule care about this interior modification?

Very recent work from other groups has shown that there are defects in the microtubule lattice and that these may even result from motors trampling over the microtubule surface (reviewed by Cross, 2019). This preprint converges with those papers: lattice defects might allow acetylase access to the microtubule interior. The idea that vesicles are carrying the means to grease their way to faster transport is very intriguing. This model has a precedent since earlier work (from some of the same authors) suggests that fast axonal transport is powered by glycolysis on-board the vesicle (Zala et al., 2013).

I like papers that reveal new complexity in biological systems. I suppose the fascination is in seeing the breakdown of the simple analogies that were constructed to explain them. Papers like this show that microtubules aren’t the “railroads of the cell”, at least not in the way that railroads in the real world work!

Generally, I liked the multiple approaches used in the paper to tackle the central question. The authors use imaging, proteomics, in vitro assays, two different neuronal transport systems and so on. The work is very comprehensive.

 

Questions to the authors

  1. Presumably ATAT1 is only present on a subset of vesicles? My guess is that it is absent from mitochondria for example. Is the model then that cargo which lacks ATAT1 would only benefit from the accelerated transport if acetylation had previously occurred?
  2. Is this the sole mechanism for acetylation of microtubules at very distal sites? Given the diffusion constraint in neurites, it seems likely that a delivery mechanism needs to be invoked for tubulin acetylation.
  3. Have the authors considered how this process works in bundles of microtubules such as those found in axons? One would predict modification of neighbouring microtubules by vesicle-transported acetylase (unless those neighbours are free of lattice defects).

References

Cross, R.A. (2019) Microtubule lattice plasticity Current Opinion in Cell Biology doi: 10.1242/jcs.219550

Even et al. (2019) ATAT1-enriched vesicles promote microtubule acetylation via axonal transport bioRxiv doi: 10.1101/542464

Zala et al. (2013) Vesicular glycolysis provides on-board energy for fast axonal transport Cell doi: 10.1016/j.cell.2012.12.029

 

 

Posted on: 13 March 2019

doi: https://doi.org/10.1242/prelights.9361

Read preprint (4 votes)

Author's response

Laurent Nguyen shared

  1. Presumably ATAT1 is only present on a subset of vesicles? My guess is that it is absent from mitochondria for example. Is the model then that cargo which lacks ATAT1 would only benefit from the accelerated transport if acetylation had previously occurred?

We did not examine whether ATAT1 was present inall cargo subtypes. However, we expect that most moving cargos will indeed benefit from preceding acetylation events on microtubules.

  1. Is this the sole mechanism for acetylation of microtubules at very distal sites? Given the diffusion constraint in neurites, it seems likely that a delivery mechanism needs to be invoked for tubulin acetylation.

ATAT1 transport seems required for distal acetylation of MTs, but we believe that its release from moving vesicles at multiple places along the MT is followed by ATAT1 intraluminal relocalisation (via an unknown mechanism leading to dynamic opening of the MT lattice) and slow passive diffusion for local MT acetylation.

  1. Have the authors considered how this process works in bundles of microtubules such as those found in axons? One would predict modification of neighbouring microtubules by vesicle-transported acetylase (unless those neighbours are free of lattice defects).

It is likely that locally released vesicular ATAT1 diffuses through the cytosol into the lumen of neighboring bundled MTs. If this is the case, we assume the existence of an ATAT1 gradient with less acetylation efficiency in neighboring MTs.

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

preLists in the cell biology category:

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

preLights peer support – preprints of interest

This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.

 



List by preLights peer support

The Society for Developmental Biology 82nd Annual Meeting

This preList is made up of the preprints discussed during the Society for Developmental Biology 82nd Annual Meeting that took place in Chicago in July 2023.

 



List by Joyce Yu, Katherine Brown

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Alumni picks – preLights 5th Birthday

This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.

 



List by Sergio Menchero et al.

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.

 



List by Nadja Hümpfer et al.

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

Planar Cell Polarity – PCP

This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.

 



List by Ana Dorrego-Rivas

BioMalPar XVI: Biology and Pathology of the Malaria Parasite

[under construction] Preprints presented at the (fully virtual) EMBL BioMalPar XVI, 17-18 May 2020 #emblmalaria

 



List by Dey Lab, Samantha Seah

1

Cell Polarity

Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.

 



List by Yamini Ravichandran

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20

 



List by Maiko Kitaoka et al.

3D Gastruloids

A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells). Updated until July 2021.

 



List by Paul Gerald L. Sanchez and Stefano Vianello

ECFG15 – Fungal biology

Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome

 



List by Hiral Shah

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

 



List by Dey Lab

Autophagy

Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.

 



List by Sandra Malmgren Hill

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.

 



List by Rob Hynds

Cellular metabolism

A curated list of preprints related to cellular metabolism at Biorxiv by Pablo Ranea Robles from the Prelights community. Special interest on lipid metabolism, peroxisomes and mitochondria.

 



List by Pablo Ranea Robles

BSCB/BSDB Annual Meeting 2019

Preprints presented at the BSCB/BSDB Annual Meeting 2019

 



List by Dey Lab

MitoList

This list of preprints is focused on work expanding our knowledge on mitochondria in any organism, tissue or cell type, from the normal biology to the pathology.

 



List by Sandra Franco Iborra

Biophysical Society Annual Meeting 2019

Few of the preprints that were discussed in the recent BPS annual meeting at Baltimore, USA

 



List by Joseph Jose Thottacherry

ASCB/EMBO Annual Meeting 2018

This list relates to preprints that were discussed at the recent ASCB conference.

 



List by Dey Lab, Amanda Haage
Close