Menu

Close

Atomic model of microtubule-bound tau

Elizabeth H Kellogg, Nisreen M.A. Hejab, Simon Poepsel, Kenneth H Downing, Frank DiMaio, Eva Nogales

Preprint posted on February 16, 2018 https://www.biorxiv.org/content/early/2018/02/16/267153

How does Tau stabilize microtubules? Recent preprint uses cryo-EM and atomic modeling to reveal where on the microtubules lattice Tau binds and how its binding stabilizes them; one more piece added to the Tau-microtubule saga.

Selected by Satish Bodakuntla

Context: Tau is arguably the most important microtubule-associated protein (MAP), possibly due to its physiological role in microtubule regulation and its pathological relevance in several neurodegenerative diseases. Over the years, several studies investigated the mode of tau interaction with microtubules and how the interaction is impaired in disease conditions. Despite these extensive efforts, the molecular mechanisms of tau-microtubule interaction and its effect on microtubule stabilization remain to be fully understood. This preprint from Eva Nogales’ lab has added some valuable information to our understanding of the ‘Tau-microtubule saga’.

Key findings: The authors used state-of-the-art cryo-EM imaging to visualize full-length tau on microtubules. The obtained higher-resolution reconstruction images significantly expanded our previous knowledge on the Tau-microtubule interaction. Some of their key findings are

  1. The cryo-EM reconstruction of 4.1Å resolution revealed the presence of a narrow, discontinuous density of tau along the protofilament and next to the unstructured C-terminal tails of tubulin. While the observed position of tau is in agreement with previous studies, the density map of tau on microtubules corresponds to a fully extended chain, as opposed to previously proposed α-helical segment.
  2. Regardless of tau addition to the pre-formed microtubules or to polymerizing tubulin, the authors never observed tau density on the microtubule luminal surface, contradicting previous studies.
  3. This atomic model clearly showed the importance of the interacting residues in tau-tubulin binding and how they could possibly be mediating the binding.

Why I am interested in this preprint: Personally, I have been interested in the work of Eva Nogales’ lab for some time. This particular study from their lab caught my interest as they worked towards understanding the ‘tau-microtubule’ saga. Earlier studies, despite of their technical limitations, have contributed greatly to our understanding of tau-microtubule binding. In this preprint, taking advantage of state-of-the-art cryo-EM imaging, authors have not only added valuable information to this binding story, but have also revisited and discussed some of the previously published contradicting results.

 Questions the work raises: Authors observe the tau density close to the attachment site of unstructured C-terminal tails. This emphasizes a possible role of acidic C-terminal tails in altering the tau affinity. Is it then possible that posttranslational modifications on these acidic tails also influence the tau affinity?

Although the authors succeeded in modeling most of the residues in tau, they could not observe the PGGG motif in the reconstructions. Is it possible that PGGG motif is not involved in the tau-microtubule interaction? Or, like the authors explain, alternatively, is it possible that the motif needs flexibility to bind different conformational states of tubulin?

Related references

X. H. Li, J. A. Culver, E. Rhoades, Tau Binds to Multiple Tubulin Dimers with Helical Structure. J Am Chem Soc 137, 9218-9221 (2015).

S. Kar, J. Fan, M. J. Smith, M. Goedert, L. A. Amos, Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J 22, 70-77 (2003).

H. Kadavath et al., Folding of the Tau Protein on Microtubules. Angew Chem Int Ed Engl 54, 10347-10351 (2015).

A. W. P. Fitzpatrick et al., Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185-190 (2017).

J. Al-Bassam, R. S. Ozer, D. Safer, S. Halpain, R. A. Milligan, MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J Cell Biol 157, 1187-1196 (2002).

 

Tags: cryo-em, maps, microtubules, tau, tubulin modifications

Posted on: 27th April 2018 , updated on: 2nd May 2018

Read preprint (1 votes)




  • Author's response

    Eva Nogales shared

    In addition to the full length protein, and several truncation constructs, we designed synthetic tau molecules with multiple copies of either the first or second microtubule-binding repeat that lend support to the idea that each repeat binds in a similar way, with R1 having the smallest footprint on the microtubule. These additional structures also strongly support the atomic model proposed, which relied on the combination of the cryo-EM density map with Rosseta modeling, by providing the same solution concerning the register of the repeat on the microtubule surface, and thus being consistent among all constructs examined.

    Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the bioinformatics category:

    Endogenous CRISPR arrays for scalable whole organism lineage tracing

    James Cotterell, James Sharpe



    Selected by Irepan Salvador-Martinez

    Lineage tracing on transcriptional landscapes links state to fate during differentiation

    Caleb Weinreb, Alejo E Rodriguez-Fraticelli, Fernando D Camargo, et al.



    Selected by Yen-Chung Chen

    1

    Charting a tissue from single-cell transcriptomes

    Mor Nitzan, Nikos Karaiskos, Nir Friedman, et al.



    Selected by Irepan Salvador-Martinez

    Large-scale analyses of human microbiomes reveal thousands of small, novel genes and their predicted functions

    Hila Sberro, Nicholas Greenfield, Georgios Pavlopoulos, et al.



    Selected by Ganesh Kadamur

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    The embryonic transcriptome of Arabidopsis thaliana

    Falko Hofmann, Michael A Schon, Michael D Nodine



    Selected by Chandra Shekhar Misra

    1

    The landscape of antigen-specific T cells in human cancers

    Bo Li, Longchao Liu, Jian Zhang, et al.



    Selected by Rob Hynds

    1

    Single-cell RNA sequencing reveals novel cell differentiation dynamics during human airway epithelium regeneration

    Sandra Ruiz Garcia, Marie Deprez, Kevin Lebrigand, et al.



    Selected by Rob Hynds

    1

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Target-specific precision of CRISPR-mediated genome editing

    Anob M Chakrabarti, Tristan Henser-Brownhill, Josep Monserrat, et al.



    Selected by Rob Hynds

    1

    Precise tuning of gene expression output levels in mammalian cells

    Yale S. Michaels, Mike B Barnkob, Hector Barbosa, et al.



    Selected by Tim Fessenden

    1

    Template switching causes artificial junction formation and false identification of circular RNAs

    Chong Tang, Tian Yu, Yeming Xie, et al.



    Selected by Fabio Liberante

    An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics

    Ilias Angelidis, Lukas M Simon, Isis E Fernandez, et al.



    Selected by Rob Hynds

    1

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Jesse R Raab, Keriayn N Smith, Camarie C Spear, et al.



    Selected by Carmen Adriaens

    1

    Higher-Order Organization Principles of Pre-translational mRNPs

    Mihir Metkar, Hakan Ozadam, Bryan R. Lajoie, et al.



    Selected by Carmen Adriaens

    Also in the cell biology category:

    ATAT1-enriched vesicles promote microtubule acetylation via axonal transport

    Aviel Even, Giovanni Morelli, Chiara Scaramuzzino, et al.



    Selected by Stephen Royle

    1

    HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly

    C. Favard, J. Chojnacki, P. Merida, et al.



    Selected by Amberley Stephens

    Hepatocyte-specific deletion of Pparα promotes NASH in the context of obesity

    Marion Regnier, Arnaud Polizzi, Sarra Smati, et al.



    Selected by Pablo Ranea Robles

    Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases

    King Faisal Yambire, Lorena Fernandez-Mosquera, Robert Steinfeld, et al.



    Selected by Sandra Franco Iborra

    1

    Thyroid hormone regulates distinct paths to maturation in pigment cell lineages

    Lauren Saunders, Abhishek Mishra, Andrew J Aman, et al.



    Selected by Hannah Brunsdon

    1

    Kinesin-6 Klp9 plays motor-dependent and -independent roles in collaboration with Kinesin-5 Cut7 and the microtubule crosslinker Ase1 in fission yeast

    Masashi Yukawa, Masaki Okazaki, Yasuhiro Teratani, et al.



    Selected by I. Bouhlel

    A pair of E3 ubiquitin ligases compete to regulate filopodial dynamics and axon guidance

    Nicholas P Boyer, Laura E McCormick, Fabio L Urbina, et al.



    Selected by Angika Basant

    1

    SorCS1-mediated Sorting of Neurexin in Dendrites Maintains Presynaptic Function

    Luis Filipe Ribeiro, Ben Verpoort, Julie Nys, et al.



    Selected by Carmen Adriaens

    1

    ENDOSOMAL MEMBRANE TENSION CONTROLS ESCRT-III-DEPENDENT INTRA-LUMENAL VESICLE FORMATION

    Vincent Mercier, Jorge Larios, Guillaume Molinard, et al.



    Selected by Nicola Stevenson

    1

    Microtubules stabilize intercellular contractile force transmission during tissue folding



    Selected by Ivana Viktorinová

    Synthetic pluripotent bacterial stem cells

    Sara Molinari, David L. Shis, James Chappell, et al.



    Selected by Lorenzo Lafranchi

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    1

    Central spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B

    Che-Hang Yu, Stefanie Redemann, Hai-Yin Wu, et al.



    Selected by Federico Pelisch

    1

    Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division

    Evgeny Zatulovskiy, Daniel F. Berenson, Benjamin R. Topacio, et al.



    Selected by Zaki Ahmad

    1

    Minimal membrane interactions conferred by Rheb C-terminal farnesylation are essential for mTORC1 activation

    Shawn M Ferguson, Brittany Angarola



    Selected by Sandra Malmgren Hill

    2

    Mechanical Stretch Kills Transformed Cancer Cells

    Ajay Tijore, Mingxi Yao, Yu-Hsiu Wang, et al.



    Selected by Vibha SINGH
    Close