Menu

Close

Basal extrusion drives cell invasion and mechanical stripping of E-cadherin

John Fadul, Gloria M Slattum, Nadja M Redd, Teresa F Zulueta-Coarasa, Michael Redd, Stephan Daetwyler, Danielle Hedeen, Jan Huisken, Jody Rosenblatt

Preprint posted on November 06, 2018 https://www.biorxiv.org/content/early/2018/11/06/463646

Kicking out oncogenic cells may promote the spread of tumours

Selected by William Hill

Background

Oncogenesis can start with a mutation to a single cell, resulting in a transformed malignant cell, within a healthy epithelial sheet. It is increasingly apparent that single transformed cells can be detected and squeezed out of the tissue by the surrounding normal neighbours. This process has been observed in flies, cell lines, organoids, zebrafish and in vivo using mouse models (Bielmier et al., 2016; Hogan et al., 2009; Kon et al., 2017; Anton et al., 2018).

Single, oncogenic cells can be extruded either apically or basally.

 

However, what is less clear is the fate of extruded cells. It is currently thought that the direction of extrusion can impact an extruded cells’ fate; if a cell is pushed out apically then it dies or is cleared through the lumen. However, it is unclear what happens to cells that extrude basally.

In this preprint, the authors investigate the fate of KRas-transformed cells surrounded by normal neighbours in zebrafish. Expression of different oncogenes was combined with fluorescent markers to track mutant cells in real-time. Oncogenes which promote extrusion are associated with metastatic cancers so the authors hypothesise that basal extrusion could be a novel mechanism of metastasis.

Key findings of the preprint

KRas-transformed cells can be extruded basally and apically and initiate tumourigenesis.

Firstly, the authors injected EGFP-KRasV12 plasmids driven by the krt4 promoter into one-cell embryos to generate mosaic expression of KRas in epidermal cells. They found that this was sufficient to form cell masses in 58% of zebrafish embryos compared to 1% of EGFP-CAAX controls. Time-lapse imaging of labelled cells over time revealed that KRasV12 cells can extrude both apically and basally, although significantly more basal extrusions were observed. They saw that basal extrusion can lead to invasion and internalisation of mutant cells into different parts of the zebrafish. Although KRas-transformed cells could form cell masses, a large number of mutant cells were lost over time, which could be a result of extrusion observed in time-lapse imaging.

Loss of p53 promotes the survival extruded cells.

During the evolution of cancer, transformed cells accumulate additional mutations which drive tumourigenesis. To model this the authors combined expression of KRasV12 with depletion of p53 via a translation-blocking morpholino. This led to a reduction in basal extrusion of aberrant cells. However, loss of p53 increased the survival of basally invading cells and their ability to survive as internalised masses at later time points.

Extruded cells can spread through the bloodstream and may initiate EMT

After establishing the system, the authors began characterising cells that invade basally. They found that all internalised cells lose the epithelial marker E-cadherin and a small subset expressed the mesenchymal marker N-cadherin. Intriguingly, time lapse imaging in combination with a vasculature reporter was used to identify GFP-KRasV12 cells in the bloodstream with 65% of 42 zebrafish having circulating cells. Finally, using different fluorescent markers for the apical and cytoplasm it was observed that the apical membrane is ripped off during extrusion and the remainder of the cell migrates away. The authors suggest that basal extrusion drives invasion of KRasV12 cells and strips off the apical surfaces and associated E-cadherin.

What I like about this preprint

This preprint demonstrates that extrusion can lead to mutant cells in the circulation of zebrafish, which is a possible new way for oncogenic cells to spread around the body. Although lots of work on the mechanism of extrusion has been carried out, this paper begins to characterise the fate of extruded cells.

The authors looked at how the mechanical force of KrasV12 cells being squeezed out constricts the nucleus and can scrape off the E-cadherin apical membrane proteins. This sudden loss of the apical membrane could have important implications for metastasis and EMT.

I also liked the great videos of cells extruding from zebrafish!

Questions to the authors

What do you think could be regulating whether mutant cells either accumulate into masses or extrude in the different parts of the zebrafish?

In the movies do you ever see KRasV12 cells extravasate from the circulation?

Mechanical stretch can promote YAP translocation into the nucleus, have you looked for YAP nuclear localisation in extruding cells?

References:

Anton, K. A., Kajita, M., Narumi, R., Fujita, Y., & Tada, M. (2018). Src-transformed cells hijack mitosis to extrude from the epithelium. Nature communications, 9(1), 4695.

Bielmeier, C., Alt, S., Weichselberger, V., La Fortezza, M., Harz, H., Jülicher, F., … & Classen, A. K. (2016). Interface contractility between differently fated cells drives cell elimination and cyst formation. Current Biology, 26(5), 563-574.

Hogan, C., Dupré-Crochet, S., Norman, M., Kajita, M., Zimmermann, C., Pelling, A. E., … & Hosoya, H. (2009). Characterization of the interface between normal and transformed epithelial cells. Nature cell biology, 11(4), 460.

Kon, S., Ishibashi, K., Katoh, H., Kitamoto, S., Shirai, T., Tanaka, S., … & Kamasaki, T. (2017). Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes. Nature cell biology, 19(5), 530.

Tags: cell competition, extrusion, zebrafish

Posted on: 2nd January 2019

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cancer biology category:

    MRE11-RAD50-NBS1 activates Fanconi Anemia R-loop suppression at transcription-replication conflicts

    Emily Yun-Chia Chang, James P Wells, Shu-Huei Tsai, et al.



    Selected by Katie Weiner

    1

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Molecularly distinct models of zebrafish Myc-induced B cell leukemia

    Chiara Borga, Clay Foster, Sowmya Iyer, et al.



    Selected by Hannah Brunsdon

    1

    The landscape of antigen-specific T cells in human cancers

    Bo Li, Longchao Liu, Jian Zhang, et al.



    Selected by Rob Hynds

    1

    Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma.

    Andrea Palamidessi, Chiara Malinverno, Emanuela FRITTOLI, et al.



    Selected by Tim Fessenden

    1

    STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pigmentation pathway

    Alexander Swoboda, Robert Soukup, Katharina Kinslechner, et al.



    Selected by Hannah Brunsdon

    Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

    Sydney M Shaffer, Benjamin L Emert, Ann E. Sizemore, et al.



    Selected by Leighton Daigh

    2

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.



    Selected by Coert Margadant

    Profiling the surface proteome identifies actionable biology for TSC1 mutant cells beyond mTORC1 signaling

    Junnian Wei, Kevin K. Leung, Charles Truillet, et al.



    Selected by Rob Hynds

    1

    Precise tuning of gene expression output levels in mammalian cells

    Yale S. Michaels, Mike B Barnkob, Hector Barbosa, et al.



    Selected by Tim Fessenden

    1

    Moving beyond P values: Everyday data analysis with estimation plots

    Joses Ho, Tayfun Tumkaya, Sameer Aryal, et al.



    Selected by Gautam Dey

    1

    JNK-mediated spindle reorientation in stem cells promotes dysplasia in the aging intestine

    Daniel Hu, Heinrich Jasper



    Selected by Maiko Kitaoka

    Mitotic chromosome alignment is required for proper nuclear envelope reassembly

    Cindy L Fonseca, Heidi LH Malaby, Leslie A Sepaniac, et al.



    Selected by Maiko Kitaoka

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Jesse R Raab, Keriayn N Smith, Camarie C Spear, et al.



    Selected by Carmen Adriaens

    1

    Single-cell Map of Diverse Immune Phenotypes Driven by the Tumor Microenvironment

    Elham Azizi, Ambrose J. Carr, George Plitas, et al.



    Selected by Tim Fessenden

    Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ)

    Scott J Callahan, Stephanie Tepan, Yan M Zhang, et al.



    Selected by Hannah Brunsdon

    1

    Also in the cell biology category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Actomyosin-II facilitates long-range retrograde transport of large cargoes by controlling axonal radial contractility

    Tong Wang, Wei Li, Sally Martin, et al.



    Selected by Ivana Viktorinová

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Stable knockout and complementation of receptor expression using in vitro cell line derived reticulocytes for dissection of host malaria invasion requirements

    Timothy J Satchwell, Katherine E Wright, Katy L Haydn-Smith, et al.



    Selected by Alyson Smith

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    Activation of intracellular transport by relieving KIF1C autoinhibition

    Nida Siddiqui, Alice Bachmann, Alexander J Zwetsloot, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    1

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Franco Iborra

    1

    Basal extrusion drives cell invasion and mechanical stripping of E-cadherin

    John Fadul, Gloria M Slattum, Nadja M Redd, et al.



    Selected by William Hill

    Ribosomal DNA and the rDNA-binding protein Indra mediate non-random sister chromatid segregation in Drosophila male germline stem cells

    George Watase, Yukiko Yamashita



    Selected by Maiko Kitaoka

    An F-actin shell ruptures the nuclear envelope by sorting pore-dense and pore-free membranes in meiosis of starfish oocytes

    Natalia Wesolowska, Pedro Machado, Celina Geiss, et al.



    Selected by Maiko Kitaoka

    1

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.



    Selected by Lorenzo Lafranchi

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.

    AND

    Live-cell single RNA imaging reveals bursts of translational frameshifting

    Kenneth R Lyon Jr, Luis U Aguilera, Tatsuya Morisaki, et al.



    Selected by Nicola Stevenson

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    2

    Close