Developmental regulation of Canonical and small ORF translation from mRNA

Pedro Patraquim, Jose I. Pueyo, M. Ali Mumtaz, Julie Aspden, J.P. Couso

Preprint posted on August 06, 2019

To be, or not to be translated. Patraquim and colleagues clarify the translational status of canonical and short ORFs during Drosophila embryogenesis.

Selected by Lorenzo Lafranchi


Proteins, the building blocks of life, are produced by the decoding of open reading frames (ORFs) carried out by ribosomes. ORFs were historically identified as stretches of at least 100 (in-frame) codons encompassing the canonical start (AUG) and one of the stop codons. However, recent refinement of transcriptome-wide sequencing technologies, in particular ribosome profiling, revealed that large fractions of the prokaryotic and eukaryotic transcriptome undergo non-canonical translation. These regions include short ORFs (sORFs) and upstream ORFs (uORFs), whose translation has been shown to result in the production of functional and biologically relevant micropeptides smaller than 100 amino acids. Despite increasing experimental validations, the extent and role of non-canonical translation assessed by sequencing approaches is highly debated. In fact, the binding of ribosomes to mRNA does not always result in productive translation. Usually, ribosomal binding above a certain level and binding showing tri-nucleotide periodicity (framing) are used as indicators of productive translation. Ribosome profiling of polysomes is also accepted as a proof of productive translation. To reveal the translational control of both short and canonical ORFs during Drosophila melanogaster embryogenesis, the authors of this study refined their previously-published polysome sequencing pipeline to discriminate with high confidence between unproductive and productive translation.


Key findings

In this study, Patraquim and colleagues divided Drosophila embryogenesis in three temporal 8-hour windows and collected biological replicates for RNA sequencing and ribosome profiling. To ensure high accuracy of translational state assessment, the authors focused their analysis only on ORFs starting with the canonical start codon and discarded overlapping uORFs. In this way, development-specific transcription and translation of around 40’000 ORFs was evaluated. Overall, 98% of the canonical ORFs, 90% of the sORFs and 72% of the uORFs were bound to ribosomes at any time during development. Interestingly, ribosome occupancy was predicted to result in productive translation for 92% of the canonical ORFs and 73% of the sORFs, whereas only 13% of the uORFs seemed to possess ribosomes engaged in productive translation. When comparing their data to a proteomics dataset, the authors observed a modest but highly significant correlation between the two datasets. This indicates that ribosome binding, as analysed by ribosome footprinting, coupled to rigorous bioinformatic analysis, isa good proxy for protein-producing translation. One of the reasons for a modest correlation could be that proteomics approaches, differently than Ribo-seq, are not able to detect lowly-expressed proteins and micropeptides.

During the developmental process, 20% of canonical ORFs showed stage-specific transcription and translation, whereas 81% of uORFs and 43% sORF seemed to be expressed at specific stages. Calculation of the translational efficiency (the ratio between Ribo-Seq and RNA-Seq signal) of all ORFs across developmental stages revealed that the large stage-specific changes observed for uORFs and sORFs are mainly due to transcription. Nevertheless, it was also shown that uORFs and sORFs still seem to be more prone to stage-specific translational control than canonical ORFs.

Previous studies highlighted that uORFs can act as repressors of the canonical main ORF present in the same mRNA. This cis-regulatory role of uORFs was proposed to be purely based on ribosome binding, without leading to productive translation. The role of uORFs in regulating downstream translation is corroborated by the data presented in this manuscript, showing that, in spite of being abundantly bound by ribosomes, only a small fraction of uORFs seems to produce micropeptides. Interestingly, extensive non-productive ribosome binding also occurs at canonical ORFs and this seems to be a specific feature of the maternal to zygotic transition.

Supporting the idea that uORFs appear randomly in 5’ leader sequences, the authors found a positive correlation between uORF number and the length of the 5’ leader sequence. Various previous studies suggested that the number of uORFs present on the leader sequence of a specific transcript negatively correlates with expression of the main ORF. However, the authors could not see such a trend in their dataset. Instead, by studying the effect of uORFs on the translational efficiency (TE) of the main ORF, the authors observed that the majority of uORFs showed coordinated changes, both regarding down- and upregulation, in TE with their main ORFs. Based on this observation uORFs can be seen as positive or negative regulators of translation, but also as simply bystanders without an active role on translation of the main ORF. Finally, the extent of TE variation of the main ORF diminishes as the number of ribosome-bound uORFs increases in its 5’ UTR, suggesting a role for uORFs in stabilizing translational efficiency of the main ORF.

Due to the large number of uORFs considered, the small fraction of uORFs undergoing productive translation could result in a significant amount of novel micropeptides (1’489). 81% of these uORFs are translated in a stage-specific manner during Drosophila embryogenesis, indicating that the encoded micropeptides could be biologically relevant for specific cellular events. Finally, the authors calculated sequence conservation and amino acid usage of ribosome-bound-only uORFs, translated uORFs and canonical ORFs. Interestingly, translated uORFs are positioning between ribosome-bound-only uORFs and canonical ORFs in this regard, suggesting that translated uORFs could be in an evolutionary transition from non-coding towards protein-coding sequences.


What I like about this work and future directions

Extensive non-canonical translation has been suggested by transcriptome-wide sequencing approaches, nevertheless it is always difficult to discriminate whether binding of a ribosome to a specific sequence results in productive protein synthesis or not. Patraquim and colleagues developed a robust bioinformatic pipeline that enabled them to discriminate between productive translation and ribosome binding without protein production. Other than this, data presented in this study support a model of protein evolution, in which uORFs and sORF encode a pool of evolutionary flexible sequences that cells can use to develop novel functionalities. Nevertheless, as the authors nicely discuss, high-throughput techniques do not reveal protein function only protein expression. Therefore, experimental validation and functional characterization of putative micropeptides is required.



How many of the translated uORFs and sORFs described in this study are novel?

Are there common aspects between a subclass of sORFs and translated uORFs? Or are these two “families” completely unrelated?

Can you speculate on how many of the putative uORFs and sORFs could lead to the production of functional micropeptides?

Are the putative uORFs and sORFs described here conserved in other organisms? Do you think cross-species conservation is a stronger proof for a micropeptide to be functional?


Tags: microprotein, sep, smorf, sorf

Posted on: 9th September 2019


Read preprint (No Ratings Yet)

  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    preLists in the developmental biology category:

    Cell Polarity

    Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.


    List by Yamini Ravichandran

    TAGC 2020

    Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20


    List by Maiko Kitaoka, Madhuja Samaddar, Miguel V. Almeida, Sejal Davla, Jennifer Ann Black, Gautam Dey

    3D Gastruloids

    A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells)


    List by Paul Gerald L. Sanchez and Stefano Vianello

    ASCB EMBO Annual Meeting 2019

    A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)


    List by Madhuja Samaddar, Ramona Jühlen, Amanda Haage, Laura McCormick, Maiko Kitaoka

    EDBC Alicante 2019

    Preprints presented at the European Developmental Biology Congress (EDBC) in Alicante, October 23-26 2019.


    List by Sergio Menchero, Jesus Victorino, Teresa Rayon, Irepan Salvador-Martinez

    EMBL Seeing is Believing – Imaging the Molecular Processes of Life

    Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019


    List by Gautam Dey

    SDB 78th Annual Meeting 2019

    A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.


    List by Alex Eve

    Lung Disease and Regeneration

    This preprint list compiles highlights from the field of lung biology.


    List by Rob Hynds

    Young Embryologist Network Conference 2019

    Preprints presented at the Young Embryologist Network 2019 conference, 13 May, The Francis Crick Institute, London


    List by Alex Eve

    Pattern formation during development

    The aim of this preList is to integrate results about the mechanisms that govern patterning during development, from genes implicated in the processes to theoritical models of pattern formation in nature.


    List by Alexa Sadier

    BSCB/BSDB Annual Meeting 2019

    Preprints presented at the BSCB/BSDB Annual Meeting 2019


    List by Gautam Dey

    Zebrafish immunology

    A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.


    List by Shikha Nayar