Menu

Close

EHD2-mediated restriction of caveolar dynamics regulates cellular lipid uptake

Claudia Matthaeus, Ines Lahmann, Severine Kunz, Wenke Jonas, Arthur Alves Melo, Martin Lehmann, Elin Larsson, Richard Lundmark, Volker Hauke, Dominik N. Mueller, Annette Schuermann, Carmen Birchmeier, Oliver Daumke

Preprint posted on January 04, 2019 https://www.biorxiv.org/content/10.1101/511709v1

The importance of caveolae dynamics on lipid metabolism

Selected by Andreas Müller

Categories: cell biology, physiology

Background:

Caveolae are invaginations of the plasma membrane with a size of 50-100 nm. They are abundant in fat tissue, muscles and endothelium. They participate in transmembrane signalling pathways (1) and play a pivotal role in lipid metabolism. Knock-out of the major proteins caveolin1 and cavin1 that form caveolae leads to a disturbed lipid metabolism associated with a lack of caveolae and less body fat. Absence of caveolae leads to a defect in lipid uptake, which is characterized by increased triglycerides in the blood and severe health problems.

There is another protein that plays an important role in caveolae formation and stabilization: Eps15 homology domain containing protein 2 (EHD2). It is localized in the neck of caveolae. So far, it has been shown that knock-down of EHD2 in cell culture lead to an increased motility of caveolae. In this study the authors have generated and characterized an EHD2 knock-mouse. They have investigated changes in in lipid metabolism and also ultrastructural and dynamic changes of caveolae in the affected tissues.

 

Key findings:

As expected, EHD2 was highly expressed in tissues with plenty of caveolae (heart, blood vessels, brown adipose tissue). EHD2 knock-out mice had more fat surrounding the heart and in liver and muscles. Furthermore white adipocytes of KO mice were bigger compared to that of control animals. The authors continued to investigate the effect of EHD2 KO on a cellular level in cultured adipocytes of KO mice. Differentiated EHD2 KO adipocytes had more lipids and were a little larger than the control cells. The authors ruled out secondary metabolic effects by knocking down EHD2 in cultured adipocytes, which showed similar results as before. There was no effect of EHD2 KO on glucose uptake and lipophagy which led the authors to conclude that EHD2 is pivotal for coordination of fatty acid uptake.

The authors also analyzed the ultrastructure of caveolae of white and brown adipose tissue of EHD2 KO mice. Intriguingly, they found that many caveolae were not connected to the plasma membrane anymore as seen in the figure below while number and size were unchanged.

 

Figure 4E shows an immuno-gold labelling against Cav1 in control and EHD2 KO cells indicating that the detached structures are indeed caveolae. Figure 4F and G show electron tomography and 3D segmentation of detached caveolae.

 

By TIRF microscopy of isolated mouse embryonic fibroblasts from EHD2 KO mice they could show that caveolar mobility and also endocytosis were increased. Furthermore, the authors provided evidence that CD36 acts as mediator for the increased fatty acid uptake in CD36 KO adipocytes. Finally, the authors could show that in obesity models EHD2 expression is reduced.

 

What I liked about this preprint:

With this preprint the authors have managed to investigate the function of a gene on the metabolic as well as on the cell biology level. Thereby they were able correlate a phenotype of increased lipid uptake on  the organ level with striking ultrastructural and live-cell imaging data of detached and dynamic caveolae. They also use the proper controls to rule out secondary metabolic effects on lipid turnover and show that  the knock-out of EHD2 alone causes this peculiar phenotype.

 

Questions and further directions:

It would be interesting to investigate possible changes of the actin cytoskeleton in adipocytes of EHD2 KO mice since it might be involved in the detachment of caveolae.

Future studies could focus on the signalling pathways involving EHD2 and CD36 to find other proteins involved.

Also, possible changes in the lipid composition of caveolae of EHD2 KO mice would be an interesting topic to look at.

Furthermore, I am curious if in obesity mouse models other proteins that are involved in caveolae formation are also down- or up-regulated.

 

Literature:

  1. Cheng, J. P. X. & Nichols, B. J. Caveolae: One Function or Many? Trends Cell Biol. 26, 177–189 (2016).

 

Tags: caveolae, lipid turnover

Posted on: 4th February 2019

Read preprint (No Ratings Yet)




  • Author's response

    Claudia Matthäus shared

    Dear Andreas, Dear prelights,

    Thank you very much for your interest in our preprint. I am more than happy to answer your raised questions:

    1) It would be interesting to investigate possible changes of the actin cytoskeleton in adipocytes of EHD2 KO mice since it might be involved in the detachment of caveolae.

    Indeed, this is a very important point. We would like to figure out how the caveolae detachment occurs in more molecular detail. Besides actin, also dynamin is suggested to be involved in the budding of caveolae from the plasma membrane (Schnitzer et al., Science 1996; Oh et al., JCB 1998). As EHD2 is located at the caveolar neck and dynamin most likely also binds there (to constrict the membrane and consequently detach caveolae from the plasma membrane), it could be concluded that in wild-type cells EHD2 is able to sterically hinder dynamin to correctly bind at the neck for a certain amount of time. In contrast, EHD2 KO cells lack the ring-like EHD2 oligomer surrounding the caveolae neck and consequently dynamin is able to budd of caveolae more likely which leads to the observed increased endocytosis and fatty acid uptake.

    2) Future studies could focus on the signalling pathways involving EHD2 and CD36 to find other proteins involved.

    In particular it is very exciting to investigate lipid trafficking from caveolae to the ER and lipid droplets. However, these experiments are very challenging to perform in living cells due to time and spatial resolution limits of conventional microscopes as well as the difficulties which may occur when fluorescence labeled lipids are used in too high concentrations. STED live imaging could highly improve spatial resolution although suitable lipids and fast time-resolved imaging methods must be applied as well.

    3) Also, possible changes in the lipid composition of caveolae of EHD2 KO mice would be an interesting topic to look at.

    True, this is an interesting idea. It could be suggested that EHD2 KO caveolae may differ in their lipid composition due to the fast movement and detachment. But in general, I think no obvious changes in the overall lipid composition of the plasma membrane occurs as we still observe normal-shaped caveolae in tissue and cells lacking EHD2.

    4) Furthermore, I am curious if in obesity mouse models other proteins that are involved in caveolae formation are also down- or up-regulated.

    It was shown in patients suffering from type 2 diabetes that Caveolin1 , one of the major caveolae protein, is upregulated (Catalan et al., Clin Endocrinol 2008). Indeed, I think this makes sense, as in obesity and related diseases an increase in adipose tissue and adipocyte cell size arise resulting in a higher number of caveolae at the plasma membrane. Furthermore, it was observed in several studies that Caveolin1 expression is increased in endothelium of obese organism suggesting an implication of obesity related endothelial dysfunction and the metabolic syndrome (Grayson et al., HistoChem Cell Bio 2013; Yang et al., Cardiovascular research 2007).

    Thank you very much!

    If you need more details or any information, please do not hesitate to contact me!

    Best regards,
    Claudia

    Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    Central spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B

    Che-Hang Yu, Stefanie Redemann, Hai-Yin Wu, et al.



    Selected by Federico Pelisch

    1

    Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division

    Evgeny Zatulovskiy, Daniel F. Berenson, Benjamin R. Topacio, et al.



    Selected by Zaki Ahmad

    1

    Minimal membrane interactions conferred by Rheb C-terminal farnesylation are essential for mTORC1 activation

    Shawn M Ferguson, Brittany Angarola



    Selected by Sandra Malmgren Hill

    Mechanical Stretch Kills Transformed Cancer Cells

    Ajay Tijore, Mingxi Yao, Yu-Hsiu Wang, et al.



    Selected by Vibha SINGH

    Mechanical Stretch Kills Transformed Cancer Cells

    Ajay Tijore, Mingxi Yao, Yu-Hsiu Wang, et al.



    Selected by Joseph Jose Thottacherry

    Inactive USP14 and inactive UCHL5 cause accumulation of distinct ubiquitinated proteins in mammalian cells

    Jayashree Chadchankar, Victoria Korboukh, Peter Doig, et al.



    Selected by Mila Basic

    A metabolic switch from OXPHOS to glycolysis is essential for cardiomyocyte proliferation in the regenerating heart

    Hessel Honkoop, Dennis de Bakker, Alla Aharonov, et al.



    Selected by Andreas van Impel

    1

    S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate desmosome assembly and cell adhesion.

    Keith T Woodley, Mark O Collins



    Selected by Abagael Lasseigne

    3

    A complex containing lysine-acetylated actin inhibits the formin INF2

    Mu A, Tak Shun Fung, Arminja N. Kettenbach, et al.



    Selected by Laura McCormick

    1

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Actomyosin-II facilitates long-range retrograde transport of large cargoes by controlling axonal radial contractility

    Tong Wang, Wei Li, Sally Martin, et al.



    Selected by Ivana Viktorinová

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Stable knockout and complementation of receptor expression using in vitro cell line derived reticulocytes for dissection of host malaria invasion requirements

    Timothy J Satchwell, Katherine E Wright, Katy L Haydn-Smith, et al.



    Selected by Alyson Smith

    Also in the physiology category:

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    Quantification of microenvironmental metabolites in murine cancer models reveals determinants of tumor nutrient availability

    Mark R Sullivan, Laura V Danai, Caroline A Lewis, et al.



    Selected by Maria Rafaeva

    Regulation of modulatory cell activity across olfactory structures in Drosophila melanogaster

    Xiaonan Zhang, Kaylynn Coates, Andrew Dacks, et al.



    Selected by Rudra Nayan Das

    1

    EHD2-mediated restriction of caveolar dynamics regulates cellular lipid uptake

    Claudia Matthaeus, Ines Lahmann, Severine Kunz, et al.



    Selected by Andreas Müller

    1

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Defining the design requirements for an assistive powered hand exoskeleton

    Quinn A Boser, Michael R Dawson, Jonathon S Schofield, et al.



    Selected by Joanna Cross

    Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis

    Jonathan P Gumucio, Austin H Qasawa, Patrick J Ferrara, et al.



    Selected by Pablo Ranea Robles

    The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner

    Federico Germani, Daniel Hain, Denise Sternlicht, et al.



    Selected by Rohan Khadilkar

    Optogenetic manipulation of medullary neurons in the locust optic lobe

    Hongxia Wang, Richard B. Dewell, Markus U. Ehrengruber, et al.



    Selected by Ana Patricia Ramos

    Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon

    Jessica Messier, Hongmei Chen, Zhao-Lin Cai, et al.

    AND

    High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins

    Mathias Mahn, Lihi Gibor, Katayun Cohen-Kashi Malina, et al.



    Selected by Mahesh Karnani

    2

    Rearing temperature and fatty acid supplementation jointly affect membrane fluidity and heat tolerance in Daphnia

    Dominik Martin-Creuzburg, Bret L. Coggins, Dieter Ebert, et al.



    Selected by Alexander Little

    Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of cell division, differentiation, and loss

    Judy Martin, Erin Nicole Sanders, Paola Moreno-Roman, et al.



    Selected by Natalie Dye

    Individual- and population-level drivers of consistent foraging success across environments

    Lysanne Snijders, Ralf HJM Kurvers, Stefan Krause, et al.



    Selected by Rasmus Ern

    Zebrafish as a model to investigate the effects of exercise in cancer

    Alexandra Yin, Nathaniel R. Campbell, Lee W. Jones, et al.



    Selected by Jacky G. Goetz

    Feedback control of neurogenesis by tissue packing

    Tom W. Hiscock, Joel B. Miesfeld, Kishore R. Mosaliganti, et al.



    Selected by Sarah Morson

    1

    Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy

    Martin Weigert, Uwe Schmidt, Tobias Boothe, et al.



    Selected by Uri Manor
    Close