Menu

Close

Imaging beyond the super-resolution limits using ultrastructure expansion microscopy (UltraExM)

Davide Gambarotto, Fabian Zwettler, Marketa Cernohorska, Denis Fortun, Susanne Borgers, Jorn Heine, Jan-Gero Schloetel, Matthias Reuss, Michael Unser, Edward Boyden, Markus Sauer, Virginie Hamel, Paul Guichard

Preprint posted on April 25, 2018 https://www.biorxiv.org/content/early/2018/04/25/308270

Go beyond the limits! Gambarotto et al. report a novel method of near-native expansion microscopy (UltraExM), which goes beyond the super-resolution limits and reveals ultrastructural details of centrioles.

Selected by Satish Bodakuntla

Categories: cell biology

Context: Availability of technical tools has always been limiting our ability to advance in science, especially biology. Understanding a cellular component/protein is often restricted by how well we know its physiological location. Despite several landmark technical advances (electron microscopy, STED, SIM, STORM, PALM and ExM) that significantly improved our knowledge of cellular systems, we are yet to fully comprehend the ultra-structural details of a cell. In this preprint, the authors developed ultrastructure ExM (UltraExM), a novel expansion microscopy method that preserves and allows visualizing the molecular architecture of multiprotein complexes at an ultrastructural level.

Key findings: The authors systematically compared the performance of established expansion microscopy techniques (physically expanding the sample) on centrioles from Chlamydomonas. They showed how these techniques are unable to uncover the fine details of centrioles without compromising their macromolecular architecture. To overcome this limitation, they have developed a novel method of expansion microscopy that sheds light on the architectural details of centrioles and on the precise localization of tubulin polyglutamylation, posttranslational modification of microtubules.

  1. UltraExM combined with super resolution microscopy allowed the authors to visualize the 9-fold symmetry of the microtubules and more importantly their centriolar chirality; such analyses until now have largely relied on electron microscopy.
  2. Using this technique, the authors for the first time unveiled the precise localization of tubulin polyglutamylation on centrioles. Polyglutamylation was shown to be around the centriole microtubules, which possibly explains how this modification is implicated in the stability and maturation of centrioles. Another exciting discovery in the preprint was to show the sub-microtubule triplet localization of tubulin polyglutamylation.

Why this preprint is interesting: This preprint describes a novel method that allows visualizing the ultrastructural details of the organelles. Their systematic evaluation of various existing methods on visualizing the protein complexes is remarkable. Further, their methodical optimization of Magnified Analysis of Proteome (MAP) protocol to achieve intact centriolar expansion with precise dimensions is impressive. I believe that this method will bring great benefit to biologists who are interested in understanding the fine details of the cellular structures. 

Questions the work raises:

The authors used Chlamydomonas centrioles with known measurements to compare the performance of existing methods and to standardize the conditions for UltraExM. Can this method be applied only on protein complexes/organelles with known dimensions?

Using this novel method, it will be interesting to see how centriolar polyglutamylation is altered in disease conditions and it effects the centriole-protein interactions.

 

Tags: centriolar chirality, centrioles, super-resolution microscopy, tubulin polyglutamylation, ultraexm

Read preprint (No Ratings Yet)




  • Author's response

    Paul Guichard and Virginie Hamel shared

    The authors used Chlamydomonas centrioles with known measurements to compare the performance of existing methods and to standardize the conditions for UltraExM. Can this method be applied only on protein complexes/organelles with known dimensions?

    Yes. We have extended our study and now showed that it works on other macromolecular assemblies such as the cilia and viruses.

     

    Using this novel method, it will be interesting to see how centriolar polyglutamylation is altered in disease conditions and it effects the centriole-protein interactions.

    Yes, using UltraExM it would be possible indeed to follow centriolar polyglutamylation and/or other centriolar proteins in different conditions, including disease, mutants or RNAi.

    1 comment

    7 days

    Satish Bodakuntla

    Thank you Paul and Virginie for sharing your thoughts on the questions raised in the highlight.




    0

    Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    EFFECTORS OF THE SPINDLE ASSEMBLY CHECKPOINT BUT NOT THE MITOTIC EXIT NETWORK ARE CONFINED WITHIN THE NUCLEUS OF SACCHAROMYCES CEREVISIAE

    Lydia R Heasley, Jennifer G DeLuca, Steven M Markus



    Selected by Hiral Shah

    An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics

    Ilias Angelidis, Lukas M Simon, Isis E Fernandez, et al.



    Selected by Rob Hynds

    1

    Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses

    Kristina Zahonova, Zoltan Fussy, Erik Bircak, et al.



    Selected by Ellis O'Neill

    1

    OptoGranules reveal the evolution of stress granules to ALS-FTD pathology

    Peipei Zhang, Baochang Fan, Peiguo Yang, et al.



    Selected by Srivats Venkataramanan

    1

    A new calcium-activated dynein adaptor protein, CRACR2a, regulates clathrin-independent endocytic traffic in T cells

    Yuxiao Wang, Walter Huynh, Taylor Skokan, et al.



    Selected by Nicola Stevenson

    Mitotic chromosome alignment is required for proper nuclear envelope reassembly

    Cindy L Fonseca, Heidi LH Malaby, Leslie A Sepaniac, et al.



    Selected by Maiko Kitaoka

    WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids

    Anna Yoney, Fred Etoc, Albert Ruzo, et al.



    Selected by Sundar Naganathan

    Spatiotemporally controlled Myosin relocalization and internal pressure cause biased cortical extension to generate sibling cell size asymmetry

    Tri Thanh Pham, Arnaud Monnard, Jonne Helenius, et al.



    Selected by Giuliana Clemente

    Nuclear decoupling is part of a rapid protein-level cellular response to high-intensity mechanical loading

    Hamish T J Gilbert, Venkatesh Mallikarjun, Oana Dobre, et al.



    Selected by Rebecca Quelch

    1

    A robust method for transfection in choanoflagellates illuminates their cell biology and the ancestry of animal septins

    David Booth, Heather Middleton, Nicole King



    Selected by Maya Emmons-Bell

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Jesse R Raab, Keriayn N Smith, Camarie C Spear, et al.



    Selected by Carmen Adriaens

    1

    Clathrin plaques form mechanotransducing platforms

    Agathe Franck, Jeanne Laine, Gilles Moulay, et al.



    Selected by Amanda Haage

    Cellular Crowding Influences Extrusion and Proliferation to Facilitate Epithelial Tissue Repair

    Jovany Jeomar Franco, Youmna Maryline Atieh, Chase Dallas Bryan, et al.



    Selected by Helen Weavers

    A non-cell autonomous actin redistribution enables isotropic retinal growth

    Marija Matejcic, Guillaume Salbreux, Caren Norden



    Selected by Yara E. Sánchez Corrales

    1

    Rearing temperature and fatty acid supplementation jointly affect membrane fluidity and heat tolerance in Daphnia

    Dominik Martin-Creuzburg, Bret L. Coggins, Dieter Ebert, et al.



    Selected by Alexander Little

    Live-cell imaging of marked chromosome regions reveals dynamics of mitotic chromosome resolution and compaction

    John K Eykelenboom, Marek Gierlinski, Zuojun Yue, et al.

    AND

    Quantitative imaging of chromatin decompaction in living cells

    Elisa Dultz, Roberta Mancini, Guido Polles, et al.



    Selected by Carmen Adriaens, Gautam Dey
    Close

    We want to make our website, and the services we provide, useful and reliable. This sometimes involves placing small amounts of information called cookies on the device you used to access the internet. If you continue to use this website we will assume you are happy to accept our cookies.

    Accept