ORP5 Transfers Phosphatidylserine To Mitochondria And Regulates Mitochondrial Calcium Uptake At Endoplasmic Reticulum - Mitochondria Contact Sites

Leila Rochin, Cecile Sauvanet, Eeva Jaaskelainen, Audrey Houcine, Annukka Kivela, Xingjie Ma, Eyra Marien, Jonas Dehairs, Julie Neveu, Romain Le Bars, Johannes Swinnen, David Bernard, David Tareste, Vesa Olkkonen, Francesca Giordano

Preprint posted on 11 August 2019

Close encounters with the other kind: How membrane contact sites regulate lipid and ion transfer from ER to mitochondria

Selected by Berrak Ugur

Categories: cell biology


Cellular functions are compartmentalized mostly by membrane bound organelles. Like a well-structured company, all these compartmentalized parts need to remain in constant communication. A mechanism that ensures proper communication between organelles is maintained by protein tethers between two membranes at membrane contact sites (MCSs). One of the major functions of these tethers is to allow exchange of signaling factors and lipids to maintain cellular homeostasis. For example, in yeast, the ER-mitochondria encounter structure (ERMES) bridges ER to mitochondria and enables exchange of phosphatidylcholine (PC) between the two organelles (Kornmann et al., 2009). However, the ERMES complex is not conserved in mammals. Although some of the tethers that function as lipid transport proteins (LTPs) at MCSs are known in mammals, our understanding of the mechanism and function of how lipids are exchanged between ER and mitochondria is still rudimentary.

A class of conserved LTPs that are localized to ER belongs to the Oxysterol binding protein (OSBP)-related protein family (ORP). Among this family, ORP5 and ORP8 are two similar ER membrane proteins that transfer phosphatidylserine (PS) between ER and plasma membrane (Chung et al., 2015). These two proteins are also localized to ER-mitochondria contact sites where they regulate mitochondrial morphology (Galmes et al., 2016). However, the role of ORP5/ORP8 in regulation of ER-mitochondria lipid transport is not clear.

Key Findings:

Previous studies had established a role for ORP5/ORP8 in ER-plasma membrane contact sites (Chung et al., 2015, Sohn et al., 2018). In this preprint, Rochin and Sauvanet et al., further characterize the role of ORP5 and ORP8. By using immuno-EM, the authors show that ORP5 and ORP8 are also localized to ER-Mitochondria contact sites in close proximity to structures that bridge inner and outer mitochondrial membranes. It was shown that the OSBP-related lipid binding/transfer domain (ORD) of ORP8 is able to transfer PS in vitro (Chung et al., 2015). The authors confirm this finding and also show that although ORD5 and ORD8 can transfer PS in vitro they cannot transfer PC and phosphatidylethanolamine (PE). Because ER-derived PS is a precursor for mitochondrial PE, the authors ask if ORP5/ORP8 Knock-down (KD) could affect PE levels in mitochondria. To address this question, they perform mass spectrometry (MS)-based lipidomics and show that mitochondrial PE levels are highly reduced in ORP5 KD cells whereas total PE levels remain unchanged. Consistent with PE’s importance for mitochondrial morphology, ORP5/ORP8 KD leads to an aberrant mitochondrial morphology. The authors also show that ORP5 forms a complex with ORP8 and binds to several members of the mitochondrial inner membrane bridging (MIB) complex. This interaction between ORP5/ORP8 and MIB complex has a cooperative role in PS transfer as the double KDs with ORP5 and members of MIB lead to an additive effect on PE decrease. Together, these findings indicate that ORP5/ORP8 transfer PS from ER to mitochondria and function near the outer-inner mitochondrial membrane bridge to facilitate PS to PE conversion at inner mitochondrial membrane.

Although ORP5 and ORP8 seem to function as a complex in PS transfer, the authors show that ORP5 diverges from ORP8 in certain functions. First, they observe that the KD of ORP5 but not ORP8 leads to an increase in certain members of MIB complex. Previous studies have shown that the increase in MIB complex members leads to accumulation of voltage-dependent Ca2+ channel, VDAC (Colombini 2012). In line with this previous study, ORP5 KD (but not ORP8 KD) also leads to an increase in VDAC. Finally, the authors show that KD of ORP5 but not ORP8 leads to an increase in mitochondrial Ca2+ influx consistent with an accumulation of VDAC. Overall, these observations indicate that although ORP5 and ORP8 are involved in PS transfer, ORP5 governs an additional function in controlling mitochondrial Ca2+ uptake. Further studies will tell the if ORP5 related changes in mitochondrial Ca2+ uptake are tied to its function in ER-plasma membrane or its role in ER-mitochondria contacts.

What did I like about this study:

It is fascinating to see how different organelles interact and communicate with each other. This study reveals how ER and mitochondria stay in touch and share a key ingredient for their health. The authors indicate a physiological role for phosphatidylserine (PS) transfer from ER to mitochondria by measuring PS derived mitochondrial PE that is shown to control mitochondrial morphology and health. Moreover, this study suggests a tripartite contact between ER and inner and outer mitochondrial membranes that may directly link physiological state of the ER to that of mitochondria. I am looking forward to seeing the new biology that this tripartite connection will unravel.

Open Questions:

1. It seems like although both ORD5 and ORD8 transfer PS (Fig1C), only KD of ORP5 leads to a significant decrease in mitochondrial PE levels (Fig 1C). Do you think that ORP5 compensates for PS transfer in the absence of ORP8?

2. The authors have previously shown that ORP5 KD leads to a decrease in mitochondrial oxygen consumption rate (OCR). Considering that ORP5/ORP8 double KD leads to a severely affected cristae formation, it would be interesting to see if these cells have a lower OCR when compared to single ORP5 KD. Also, I am wondering if total ATP levels are affected by ORP5/ORP8 double KD or if ATP levels are somehow compensated by a different mechanism? This question is especially important as the authors did not observe a change in mitochondrial membrane potential.

3. Considering that ORP5/8 seem to have similar functions, do you have any speculations as to how the functional differences between ORP5 KD and ORP8 KD are regulated?


Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, Narayanaswamy P, Wenk MR, Nakatsu F, De Camilli P (2015) PI4P/phosphatidylserine counter transport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349: 428-32

Colombini M (2012) VDAC structure, selectivity, and dynamics. Biochimica et biophysica acta 1818: 1457-65

Galmes R, Houcine A, van Vliet AR, Agostinis P, Jackson CL, Giordano F (2016) ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO reports 17: 800-10

Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325: 477-81

Sohn M, Korzeniowski M, Zewe JP, Wills RC, Hammond GRV, Humpolickova J, Vrzal
L, Chalupska D, Veverka V, Fairn GD, Boura E, Balla T (2018) PI(4,5)P(2) controls
plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites.
J Cell Biol. 217(5):1797-1813Close encounters with the other kind: How membrane contact sites regulate lipid and ion transfer from ER to mitochondria

Tags: er, lipid transfer, membrane contact sites, mitochondria, mitochondrial ca2+ uptake, orp

Posted on: 12 August 2019


Read preprint (No Ratings Yet)

Have your say

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

preLists in the cell biology category:


The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!


List by Osvaldo Contreras

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.


List by Alex Eve

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020


List by Ana Dorrego-Rivas

Planar Cell Polarity – PCP

This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.


List by Ana Dorrego-Rivas

BioMalPar XVI: Biology and Pathology of the Malaria Parasite

[under construction] Preprints presented at the (fully virtual) EMBL BioMalPar XVI, 17-18 May 2020 #emblmalaria


List by Dey Lab, Samantha Seah


Cell Polarity

Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.


List by Yamini Ravichandran

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20


List by Maiko Kitaoka et al.

3D Gastruloids

A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells). Updated until July 2021.


List by Paul Gerald L. Sanchez and Stefano Vianello

ECFG15 – Fungal biology

Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome


List by Hiral Shah

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)


List by Madhuja Samaddar et al.

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019


List by Dey Lab


Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.


List by Sandra Malmgren Hill

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.


List by Rob Hynds

Cellular metabolism

A curated list of preprints related to cellular metabolism at Biorxiv by Pablo Ranea Robles from the Prelights community. Special interest on lipid metabolism, peroxisomes and mitochondria.


List by Pablo Ranea Robles

BSCB/BSDB Annual Meeting 2019

Preprints presented at the BSCB/BSDB Annual Meeting 2019


List by Dey Lab


This list of preprints is focused on work expanding our knowledge on mitochondria in any organism, tissue or cell type, from the normal biology to the pathology.


List by Sandra Franco Iborra

Biophysical Society Annual Meeting 2019

Few of the preprints that were discussed in the recent BPS annual meeting at Baltimore, USA


List by Joseph Jose Thottacherry

ASCB/EMBO Annual Meeting 2018

This list relates to preprints that were discussed at the recent ASCB conference.


List by Dey Lab, Amanda Haage