Menu

Close

Persistent cell motility requires transcriptional feedback of cytoskeletal – focal adhesion equilibrium by YAP/TAZ

Devon E Mason, James H Dawahare, Trung Dung Nguyen, Yang Lin, Sherry L. Voytik-Harbin, Pinar Zorlutuna, Mervin E Yoder, Joel D Boerckel

Preprint posted on February 15, 2018 https://doi.org/10.1101/265744

Keep YAP/TAZ activity and carry on. YAP/TAZ reads the mechanical environment and feeds back onto the cytoskeletal machinery to allow for persistent cell migration.

Selected by Carla Mulas

Categories: cell biology

Background

Cell migration requires the coordination of actomyosin contraction, F-actin processing, and focal adhesion remodeling. The environment plays a key role, as cells interpret both chemical and mechanical signals to alter their behavior. These signals interface with the machinery that regulates tension, actin processing and focal adhesion turnover, and can also alter gene expression. But is there a role for transcription in directing cell migration? Can the environment-mediated changes in transcription influence cell behavior? These are the questions under debate in this preprint. Mason and colleagues uncover a feedback mechanism by which the mechanosensitive YAP/TAZ transcription factors affect cell migration. To model this process, they use endothelial colony forming cells (ECFCs), circulating endothelial progenitors that play a role in forming new vasculature during wound repair and development.

 

What are the key findings?

By using ECFC cells, the authors confirm that YAP/TAZ are mechanosensitive – they are capable of sensing both matrix stiffness and cell density, and become nuclear (and therefore active) in stiffer and less crowded environments.

Surprisingly, chemical inhibition of transcription or depletion of YAP/TAZ reduces the speed and directionality of migration. The effect is not due to reduced expression of cytoskeletal components, which generally have half-lives greater than the experimental time window and are found in excess, nor failure to initiate cell polarisation.

Instead, YAP/TAZ-depleted cells show increased anchorage to the matrix, and increased cytoskeletal prestress: a larger amount of actin stress fibers, greater number of focal adhesions and focal adhesion length, and greater amount of phosphorylated myosin light chain. This shows that YAP/TAZ activity is essential for motility in ECFC cells.

How is it that YAP/TAZ transcriptional activity alters cell behavior, if it is not related to cytoskeletal gene expression? Upon YAP/TAZ depletion, the authors identify a rapid increase in expression of NUAK2, a kinase which deactivates the myosin light chain phosphatase and therefore reduces actomyosin contractility. Abrogating NUAK2 expression in YAP/TAZ-depleted cells mostly rescues migration, focal adhesion size and the amount of stress fibers.

Does this apply in a more complex 3D system, when the endothelial progenitor cells have to organize and form new vasculature, and sense their environment? The authors’ data suggest that it does: when YAP/TAZ activity or levels are reduced, either in cells transplanted in vivo, or in aorta explant cultures, vascular sprouting was also reduced.

 

Why this is cool

As a non-cell mechanics person (I work on cell fate decisions in stem cells), I found this a really interesting study. It provides a mechanism by which cells can rapidly sense and respond to the environment, either as individuals or during collective cell migration.

YAP/TAZ have also been shown to coordinate cell fate decisions in different systems. For example, modulation of YAP/TAZ causes defects in branching morphogenesis in the developing lung and kidney1,2. It would be interesting to see whether in such systems YAP/TAZ were able to coordinate morphogenesis with cell fate specification. Furthermore, could the YAP/TAZ feedback system on the cytoskeleton also allow cells to collectively sense a preferred path of migration within matrices with varying stiffness?

 

References

  1. Reginensi, A., Enderle, L., Gregorieff, A., Johnson, R. L., Wrana, J. L. & McNeill, H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nature Communications 7, 12309 (2016).
  2. Lin, C., Yao, E., Zhang, K., Jiang, X., Croll, S., Thompson-Peer, K. & Chuang, P.-T. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. eLife 6, 14665 (2017).

 

Posted on: 27th February 2018 , updated on: 6th March 2018

Read preprint (No Ratings Yet)




  • Author's response

    Devon Mason & Joel Boerckel shared

    Whether regulated transcription is needed for migration has been a long-standing question. We were surprised to find that preventing either transcription or translation caused motility arrest, not because the cells “run out of gas,” so to speak, but rather because they lose the ability to put a break on actin tension and adhesion maturation. We were particularly excited to find that this is regulated by a feedback loop in which cytoskeletal dynamics induce transcriptional regulators that in turn modulate the cytoskeleton. Determining the role of this cytoskeletal feedback system in neovascularization in vivo is certainly an interesting follow-up question we’re chasing.

    We very much appreciate the implications you raise. Our laboratory is broadly interested in the mechanobiology of morphogenesis and regeneration, and we are excited to test the role of this feedback mechanism in these contexts. For example, we recently found that YAP and TAZ combinatorially determine the shape and constitution of bone matrix during development.1 Interestingly, similar to our observations here, we found that YAP and TAZ can partially compensate for one another, but also exhibit differential potency. We are very interested to understand the mechanisms that provide this contextual specificity and to determine the extent to which this cytoskeletal feedback influences cell fate decisions.

    Your question about durotaxis an excellent one: how do cells migrate from regions of low to high matrix rigidity without getting stuck? Is mechanotransduction merely a one-way street, in which mechanical cues induce transcription factor activation, gene expression, and cell fate decisions linearly, or could these events require transcriptional feedback? We are anxious to find out!

    1. Kegelman CD, Mason DE, Dawahare JH, Horan DJ, Vigil GD, Howard SS, Robling AG, Bellido TM, Boerckel JD. Skeletal cell YAP and TAZ combinatorially promote bone development. FASEB J; 2018 Jan 10;fj.201700872R.

    Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    SABER enables highly multiplexed and amplified detection of DNA and RNA in cells and tissues

    Jocelyn Y. Kishi, Brian J. Beliveau, Sylvain W. Lapan, et al.



    Selected by Yen-Chung Chen

    PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection

    Catherine M Buckley, Victoria L Heath, Aurelie Gueho, et al.



    Selected by Giuliana Clemente

    1

    Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

    Sydney M Shaffer, Benjamin L Emert, Ann E. Sizemore, et al.



    Selected by Leighton Daigh

    1

    Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

    Kerstin Klinkert, Nicolas Levernier, Peter Gross, et al.

    AND

    Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

    Sachin Kotak, Sukriti Kapoor



    Selected by Giuliana Clemente

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.



    Selected by Coert Margadant

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    mRNA localisation in endothelial cells regulates blood vessel sprouting

    Guilherme Costa, Nawseen Tarannum, Shane Herbert



    Selected by Andreas van Impel

    Local protein synthesis in axon terminals and dendritic spines differentiates plasticity contexts

    Anne-Sophie Hafner, Paul Donlin-Asp, Beulah Leitch, et al.



    Selected by Dipen Rajgor

    The cytoskeleton as a smart composite material: A unified pathway linking microtubules, myosin-II filaments and integrin adhesions

    Nisha Mohd Rafiq, Yukako Nishimura, Sergey V. Plotnikov, et al.



    Selected by Coert Margadant

    Quantitative, real-time, single cell analysis in tissue reveals expression dynamics of neurogenesis

    Cerys S Manning, Veronica Biga, James Boyd, et al.



    Selected by Teresa Rayon

    Profiling the surface proteome identifies actionable biology for TSC1 mutant cells beyond mTORC1 signaling

    Junnian Wei, Kevin K. Leung, Charles Truillet, et al.



    Selected by Rob Hynds

    1

    Optogenetic dissection of mitotic spindle positioning in vivo

    Lars-Eric Fielmich, Ruben Schmidt, Daniel J Dickinson, et al.



    Selected by Angika Basant

    1

    Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo.

    Jonathan B Michaux, Francois B Robin, William M McFadden, et al.



    Selected by Sundar Naganathan

    Moving beyond P values: Everyday data analysis with estimation plots

    Joses Ho, Tayfun Tumkaya, Sameer Aryal, et al.



    Selected by Gautam Dey

    1

    A limited number of double-strand DNA breaks are sufficient to delay cell cycle progression.

    Jeroen van den Berg, Anna G. Manjon, Karoline Kielbassa, et al.



    Selected by Leighton Daigh

    Optogenetic manipulation of medullary neurons in the locust optic lobe

    Hongxia Wang, Richard B. Dewell, Markus U. Ehrengruber, et al.



    Selected by Ana Patricia Ramos
    Close