Dual role of Miro protein clusters in mitochondrial cristae organisation and ER-Mitochondria Contact Sites
Posted on: 26 June 2019
Preprint posted on 21 May 2019
Article now published in Nature Communications at http://dx.doi.org/10.1038/s41467-019-12382-4
Keeping it together: Miro proteins regulate whole mitochondrial transport in association with MICOS complex.
Selected by Sandra Franco IborraCategories: cell biology
Background
Mitochondrial Rho GTPase (Miro) proteins link mitochondria to kinesin and dynein motors, enabling the transport of mitochondria along microtubules. Miro proteins are located on the outer mitochondrial membrane (OMM) and recruit trafficking kinesin protein (TRAK) adaptors, shown to bind to both kinesin-1 and dynein/dynactin (Birsa et al., 2013; van Spronsen et al., 2013). Interestingly, the yeast and the Drosophila homologues of Miro proteins are thought to be associated with the mitochondrial contact site and cristae organizing system (MICOS). The MICOS complex is involved in the maintenance of mitochondrial cristae and inner membrane (IMM) architecture. Moreover, MICOS complex interacts with Sam50 protein on the OMM, building a bridge between the OMM and the IMM. This structure is called mitochondrial intermembrane space bridging complex (MIB).
Representation of the MICOS and the MIB complex. The MICOS complex in humans is formed by Mic60/mitofilin, Mic10, Mic19/CHCHD3, Mic25/CHCHD6, Mic23, Mic27, Mic13, Mic14/CHCHD10 and DnaJC11 (Kozjak-Pavlovic, 2017).
Some recent findings have challenged this classical role of Miro proteins, since in their complete absence kinesin and dynein motors and the TRAK adaptors can still localise to the mitochondrial membrane (Lopez-Domenech et al., 2018). In this preprint, the authors continue to investigate alternative roles of Miro proteins in mitochondrial biology combining biochemical, super-resolution and electron microscopy techniques.
Key findings
The authors had already observed that in Miro double-knockout (DKO) MEFs mitochondria were preferentially accumulated perinuclearly, suggesting a defect in mitochondrial transport. When looking more closely at mitochondrial structure using electron microscopy in DKO MEF cells, the authors observed alterations in IMM structure and cristae architecture. However, no significant changes in MICOS components, Sam50 protein, motor proteins or other mitochondrial proteins were observed. This suggests that Miro proteins may play a role in IMM organization. Indeed, Miro1 and Miro2 co-immunoprecipitate with core components of the MICOS complex, responsible for mitochondrial cristae organization, and with Sam50, an outer mitochondrial membrane that interacts with MICOS complex to bridge both membranes. Using super resolution microscopy techniques, Miro proteins were shown to localize to discrete domains along the mitochondrial network forming nanoclusters. Miro1 and Miro2 nanoclusters were found to have a similar average diameter of 100 nm, which was conserved across different cell types. Using dual color dSTORM imaging, authors found that Mic60/Mitofilin nanoscale pattern was partially overlapping with the pattern found for Miro proteins.
Therefore, the authors were able to show that Miro proteins a) form clusters that associate with MICOS clusters, and b) interact with MICOS complex and Sam50. But still some questions remained, such as the role of Miro1 and Miro2 in MICOS complex stabilization/association and their interaction with Sam50. Interestingly, Miro proteins were not essential to maintain the core of the MICOS complex, but their loss could destabilize certain interactions between components of the MICOS complex. So what happens with MICOS complex distribution upon Miro proteins loss? The authors found that Mic19/CHCHD3 could still form clusters, but those were severely affected, with some mitochondrial areas devoid of them, indicating that Miro proteins are important for the distribution of MICOS clusters.
It was previously established that Miro1 and Miro2 regulate mitochondrial transport along microtubules by interacting with TRAK adaptors. Interestingly, Mic19/CHCHD3 and TRAK1/2 co-immunoprecipitate in the presence of Miro proteins. However, loss of Miro proteins hampers the interaction between MICOS complex and TRAK proteins. This unveils a new function of Miro proteins linking motor machineries with the inner membrane structure of mitochondria. Interestingly, loss of Miro proteins resulted in distally-transported mitochondria almost devoid of Mic19/CHCHD3 clusters. To further support the hypothesis that Miro proteins are able to ensure the concerted transport of OMM and IMM components by interacting with the transport machinery and the MICOS complex, authors analysed the distribution of an IMM component of the OXPHOS system, ATP5α versus an OMM, Tom40. By forcing the redistribution of mitochondria to the periphery, authors observed that in cells lacking Miro proteins, the distribution pattern of Tom40 (OMM marker) and ATP5α (IMM marker) was shifted. Tom40 was preferentially distributed towards the periphery of the cell while ATP5α signal was accumulated in more proximal structures.
Why I like this preprint
One thing that is particularly novel in this preprint is the use of super resolution imaging techniques to visualize submitochondrial compartments. This is especially important for mitochondria since their diameter is generally close to the resolution limit of conventional light microscopy, making it necessary to use super resolution techniques to image submitochondrial protein distributions. Using those techniques, this preprint advances our knowledge in the submitochondrial organization of different complexes. Moreover, the authors continue to challenge the accepted model of mitochondrial trafficking mediated by Miro proteins and evidence for an alternative function of Miro proteins in regulating not only what happens “on the outside” of mitochondria but also “on the inside”. Therefore, Miro proteins are emerging as major regulators in the concerted transport of both outer and inner mitochondrial membranes.
Questions for the authors
- Do you think that loss of Miro proteins destabilizes MICOS complex, altering the mitochondrial inner membrane organization and cristae structure? Is it possible that losing the tether between the mitochondrial transport machinery and MICOS complex affects the transport rate between inner and outer mitochondrial membranes resulting in cristae disassembling?
- Does the loss of inner membrane organization and cristae structure impact OXPHOS function in DKO cells? Is there any defect in mitochondrial respiration, increased ROS production or loss in membrane potential?
- Do you think that this bridge between motor proteins and inner mitochondrial membrane complexes is particularly important in those cells where mitochondria have to travel long distances, such as neurons?
References
- Birsa N. et al. Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins. Biochem Soc Trans. 41(6):1525-31 (2013).
- Kozjak-Pavlovic V. The MICOS complex of human mitochondria. Cell Tissue Res. 367(1):83-93 (2017).
- López-Doménech G. et al. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J. 37(3):321-336 (2018).
- van Spronsen M. et al. TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron. 77(3):485-502 (2013).
doi: https://doi.org/10.1242/prelights.11613
Read preprintSign up to customise the site to your preferences and to receive alerts
Register hereAlso in the cell biology category:
Motor Clustering Enhances Kinesin-driven Vesicle Transport
Sharvari Pitke
Cellular signalling protrusions enable dynamic distant contacts in spinal cord neurogenesis
Ankita Walvekar
Green synthesized silver nanoparticles from Moringa: Potential for preventative treatment of SARS-CoV-2 contaminated water
Safieh Shah, Benjamin Dominik Maier
preListscell biology category:
in theNovember in preprints – the CellBio edition
This is the first community-driven preList! A group of preLighters, with expertise in different areas of cell biology, have worked together to create this preprint reading lists for researchers with an interest in cell biology. Categories include: 1) cancer cell biology 2) cell cycle and division 3) cell migration and cytoskeleton 4) cell organelles and organisation 5) cell signalling and mechanosensing 6) genetics/gene expression
List by | Felipe Del Valle Batalla et al. |
BSCB-Biochemical Society 2024 Cell Migration meeting
This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.
List by | Reinier Prosee |
‘In preprints’ from Development 2022-2023
A list of the preprints featured in Development's 'In preprints' articles between 2022-2023
List by | Alex Eve, Katherine Brown |
preLights peer support – preprints of interest
This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.
List by | preLights peer support |
The Society for Developmental Biology 82nd Annual Meeting
This preList is made up of the preprints discussed during the Society for Developmental Biology 82nd Annual Meeting that took place in Chicago in July 2023.
List by | Joyce Yu, Katherine Brown |
CSHL 87th Symposium: Stem Cells
Preprints mentioned by speakers at the #CSHLsymp23
List by | Alex Eve |
Journal of Cell Science meeting ‘Imaging Cell Dynamics’
This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.
List by | Helen Zenner |
9th International Symposium on the Biology of Vertebrate Sex Determination
This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.
List by | Martin Estermann |
Alumni picks – preLights 5th Birthday
This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.
List by | Sergio Menchero et al. |
CellBio 2022 – An ASCB/EMBO Meeting
This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.
List by | Nadja Hümpfer et al. |
Fibroblasts
The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!
List by | Osvaldo Contreras |
EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)
A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.
List by | Alex Eve |
FENS 2020
A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020
List by | Ana Dorrego-Rivas |
Planar Cell Polarity – PCP
This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.
List by | Ana Dorrego-Rivas |
BioMalPar XVI: Biology and Pathology of the Malaria Parasite
[under construction] Preprints presented at the (fully virtual) EMBL BioMalPar XVI, 17-18 May 2020 #emblmalaria
List by | Dey Lab, Samantha Seah |
1
Cell Polarity
Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.
List by | Yamini Ravichandran |
TAGC 2020
Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20
List by | Maiko Kitaoka et al. |
3D Gastruloids
A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells). Updated until July 2021.
List by | Paul Gerald L. Sanchez and Stefano Vianello |
ECFG15 – Fungal biology
Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome
List by | Hiral Shah |
ASCB EMBO Annual Meeting 2019
A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)
List by | Madhuja Samaddar et al. |
EMBL Seeing is Believing – Imaging the Molecular Processes of Life
Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019
List by | Dey Lab |
Autophagy
Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.
List by | Sandra Malmgren Hill |
Lung Disease and Regeneration
This preprint list compiles highlights from the field of lung biology.
List by | Rob Hynds |
Cellular metabolism
A curated list of preprints related to cellular metabolism at Biorxiv by Pablo Ranea Robles from the Prelights community. Special interest on lipid metabolism, peroxisomes and mitochondria.
List by | Pablo Ranea Robles |
BSCB/BSDB Annual Meeting 2019
Preprints presented at the BSCB/BSDB Annual Meeting 2019
List by | Dey Lab |
MitoList
This list of preprints is focused on work expanding our knowledge on mitochondria in any organism, tissue or cell type, from the normal biology to the pathology.
List by | Sandra Franco Iborra |
Biophysical Society Annual Meeting 2019
Few of the preprints that were discussed in the recent BPS annual meeting at Baltimore, USA
List by | Joseph Jose Thottacherry |
ASCB/EMBO Annual Meeting 2018
This list relates to preprints that were discussed at the recent ASCB conference.
List by | Dey Lab, Amanda Haage |