Menu

Close

Limb- and tendon-specific Adamtsl2 deletion identifies a soft tissue mechanism modulating bone length

Dirk Hubmacher, Stetson Thacker, Sheila M Adams, David Birk, Ronen Schweitzer, Suneel Apte

Preprint posted on April 24, 2018 https://www.biorxiv.org/content/early/2018/04/24/307496

The long and the short of limb growth: impairment of soft-tissue architecture via Adamtsl2 deletion reduces long-bone growth, adding evidence of a coupling mechanism that ensures that all tissues grow in coordination within the vertebrate limb

Selected by Alberto Rosello-Diez

Background

Most organs are composed of different tissues that follow an intrinsic developmental program based on their set of expressed genes. However, the internal architecture of organs is preserved as they grow, suggesting that there is communication between tissues within organs, so that they grow in coordination. The molecular mechanisms for this inter-tissue communication remain quite elusive, aside from a few exceptions regarding limb growth. Two studies (one of them by yours truly et al.) showed that joint tissues communicate with the growth plate (the region driving long bone growth), and that signalling imbalance in the joint can impact on bone growth [1,2]. The current preprint sheds more light on this obscure topic. While modelling human musculoskeletal diseases due to changes in microfibril structure, Hubmacher and colleagues unexpectedly found new evidence of the coupling between growth of bones and the soft tissues in mouse limbs. They were studying the function of Adamtsl2, which encodes a secreted glycoprotein involved in fibril structure.

Key findings

Hubmacher et al. deleted the gene Adamtsl2 in several tissues of the limb, and analysed the effect on limb growth and soft-tissue architecture. They made several significant findings:

  1. During late gestation, Adamtsl2 is expressed in the developing tendons, the outer prospective articular cartilage and the skeletal muscle. Postnatally, it gets restricted to tendons, a thin layer of skin, muscle spindles and the superficial meniscus. In other words it is never expressed in the developing bones.
  2. Conditional deletion of Adamtsl2 in the limb mesenchyme using Prx1-Cre [3] leads to some expected effects, such as altered architecture and composition of microfibrils (e.g. an embryonic code of fibrillin is retained).
  3. Unexpectedly, the mutant animals display reduced bone growth postnatally, especially in the hindlimbs, although not at birth. The bones are also stubbier, with a wider shaft. Importantly, the authors could not find defects in the height of the growth plate, although other parameters were not analysed.
  4. The authors noticed that the Achilles tendon was shorter in the mutant limbs, which prompted them to delete Adamtsl2 exclusively in the tendons, using Scx-Cre. Intriguingly, the bones were also shorter in these mutants, confirming a tissue-nonautonomous role of Adamtsl2 in bone growth control.
  5. Less surprisingly, tendon cells were disorganised in the mutants, exhibiting a rounded shape and some changes in fibrillin expression, revealing a tissue-autonomous role of Adamtsl2 in tendon structure.

What I like about this preprint

It is quite clear that this study’s initial focus was on human disease, but ended up shedding light on a fundamental biological mechanism, namely the coordination of growth between the tissues composing an organ. Kudos to the authors for embracing the new research direction. It is refreshing to see how curiosity always finds its way.

Pending questions

  1. How does tendon structure influence bone growth? While they don’t rule out paracrine signalling (akin to the one we described between the infrapatellar fat pad and the growth plate [2]), the authors hypothesise that the effect is mechanical, such that a shorter tendon exerts compressive forces on the growing bone, limiting its growth. This hypothesis could be easily tested by resecting the Achilles tendon in control and mutant pups, so that the compressive forces are relieved before the phenotype arises.
  2. What is the role of soft tissues other than tendons? The authors show that deleting Adamtsl2 in all soft tissues not only impairs bone growth, but also leads to a wider shaft, whereas deleting Adamtsl2 only in the tendons does not affect bone width. This suggests that different tissues exert distinct influences on bone growth.
  3. Is the observed effect specific to Adamtsl2 or a general consequence of loss of tendon integrity? It would be interesting to induce cell death in tendons, to address whether another way of inducing shortening also impairs bone growth. The potential role of inlflammation could be relevant to human injuries.

Related research

  1. Longobardi et al. 2012. Dev. Cell.
  2. Rosello-Diez et al. 2017. eLife.
  3. Logan et al. 2002. Genesis.

Tags: bone growth, mouse, soft tissues, tendons, tissue crosstalk

Posted on: 30th May 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    Revealing the nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy

    Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, et al.



    Selected by Gautam Dey

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis

    Min Zhu, Hirotaka Tao, Mohammad Samani, et al.



    Selected by Natalie Dye

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Synergy with TGFβ ligands switches WNT pathway dynamics from transient to sustained during human pluripotent cell differentiation

    Joseph Massey, Yida Liu, Omar Alvarenga, et al.



    Selected by Pierre Osteil

    1

    3D Tissue elongation via ECM stiffness-cued junctional remodeling

    Dong-Yuan Chen, Justin Crest, Sebastian J Streichan, et al.



    Selected by Sundar Naganathan

    EGFR signaling coordinates patterning with cell survival during Drosophila epidermal development

    Samuel Henry Crossman, Sebastian J Streichan, Jean-Paul Vincent



    Selected by Sarah Bowling

    1

    Damage-induced reactive oxygen species enable zebrafish tail regeneration by repositioning of Hedgehog expressing cells.

    Henry Roehl, Montserrat Garcia Romero, Gareth McCathie, et al.



    Selected by Alberto Rosello-Diez

    Arterio-Venous Remodeling in the Zebrafish Trunk Is Controlled by Genetic Programming and Flow-Mediated Fine-Tuning

    Ilse Geudens, Baptiste Coxam, Silvanus Alt, et al.



    Selected by Andreas van Impel

    Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing

    Qingyun Li, Zuolin Cheng, Lu Zhou, et al.



    Selected by Zheng-Shan Chong

    Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development

    Nicole Traeber, Klemens Uhlmann, Salvatore Girardo, et al.



    Selected by Jacky G. Goetz

    millepattes micropeptides are an ancient developmental switch required for embryonic patterning

    Suparna Ray, Miriam I Rosenberg, Hélène Chanut-Delalande, et al.



    Selected by Erik Clark

    Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

    Kerstin Klinkert, Nicolas Levernier, Peter Gross, et al.

    AND

    Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

    Sachin Kotak, Sukriti Kapoor



    Selected by Giuliana Clemente

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.



    Selected by Coert Margadant

    SOL1 and SOL2 Regulate Fate Transition and Cell Divisions in the Arabidopsis Stomatal Lineage

    Abigail R Simmons, Kelli A Davies, Wanpeng Wang, et al.



    Selected by Martin Balcerowicz

    Analysis of the role of Nidogen/entactin in basement membrane assembly and morphogenesis in Drosophila

    Jianli Dai, Beatriz Estrada, Sofie Jacobs, et al.



    Selected by Nargess Khalilgharibi

    Also in the genetics category:

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Arterio-Venous Remodeling in the Zebrafish Trunk Is Controlled by Genetic Programming and Flow-Mediated Fine-Tuning

    Ilse Geudens, Baptiste Coxam, Silvanus Alt, et al.



    Selected by Andreas van Impel

    CRISPR/Cas9-mediated gene deletion of the ompA gene in an Enterobacter gut symbiont impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes

    Shivanand Hegde, Pornjarim Nilyanimit, Elena Kozlova, et al.



    Selected by Snehal Kadam

    millepattes micropeptides are an ancient developmental switch required for embryonic patterning

    Suparna Ray, Miriam I Rosenberg, Hélène Chanut-Delalande, et al.



    Selected by Erik Clark

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    The cis-regulatory logic underlying abdominal Hox-mediated repression versus activation of regulatory elements in Drosophila



    Selected by Clarice Hong

    1

    Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages is necessary for functional spinal cord regeneration in zebrafish

    Themistoklis M. Tsarouchas, Daniel Wehner, Leonardo Cavone, et al.



    Selected by Shikha Nayar

    1

    JNK-mediated spindle reorientation in stem cells promotes dysplasia in the aging intestine

    Daniel Hu, Heinrich Jasper



    Selected by Maiko Kitaoka

    Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions

    Summer B. Thyme, Lindsey M. Pieper, Eric H. Li, et al.



    Selected by Daniel Grimes

    Super-Mendelian inheritance mediated by CRISPR/Cas9 in the female mouse germline

    Hannah A. Grunwald, Valentino M. Gantz, Gunnar Poplawski, et al.



    Selected by Rebekah Tillotson

    1

    The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization

    Sarah Herberg, Krista R Gert, Alexander Schleiffer, et al.



    Selected by James Gagnon

    Functional testing of a human PBX3 variant in zebrafish reveals a potential modifier role in congenital heart defects

    Gist H. Farr III, Kimia Imani, Darren Pouv, et al.



    Selected by Hannah Brunsdon

    A robust method for transfection in choanoflagellates illuminates their cell biology and the ancestry of animal septins

    David Booth, Heather Middleton, Nicole King



    Selected by Maya Emmons-Bell

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Jesse R Raab, Keriayn N Smith, Camarie C Spear, et al.



    Selected by Carmen Adriaens

    1

    Genetic compensation is triggered by mutant mRNA degradation

    Mohamed El-Brolosy, Andrea Rossi, Zacharias Kontarakis, et al.



    Selected by Andreas van Impel

    1

    Close