Menu

Close

Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling

Claudio Cantù, Anastasia Felker, Dario Zimmerli, Elena Chiavacci, Elena Maria Cabello, Lucia Kirchgeorg, Tomas Valenta, George Hausmann, Jorge Ripoll, Natalie Vilain, Michel Aguet, Konrad Basler, Christian Mosimann

Preprint posted on January 17, 2018 https://www.biorxiv.org/content/early/2018/01/17/249680

Nuclear regulators of the Wnt/ß-catenin pathway – previously associated with human developmental cardiac malformations - as key players during vertebrate heart patterning.

Selected by Andreas van Impel

Background

Genetic alterations in BCL9 and BCL9-like have previously been associated with the development of congenital heart disease in humans, a condition that nearly affects 1% of the population and presents with various structural and functional abnormalities of the heart. BCL9 proteins and their interaction partners PYGO1/2 have been shown to act as co-factors of nuclear ß-catenin in the context of canonical Wnt signalling. Despite the involvement of the Wnt pathway in several aspects of cardiac development, a function for BCL9/PYGO genes during vertebrate heart formation has not been reported so far.

 

Key findings

Here, the authors of this preprint tackle the question whether BCL9 and PYGO are required for heart development, making use of two vertebrate model systems: zebrafish and mouse. In both species, loss of either protein function results in severe cardiac defects. Importantly, interference with the BCL9/PYGO complex seems to cause a selective reduction of canonical Wnt signalling levels in the heart and other affected tissues but does not systemically abrogate transcriptional activity of ß-catenin suggesting that both proteins are involved in mediating only a specific subset of Wnt signalling events in mouse and zebrafish embryos. Using conditional knock-outs in mice the authors further demonstrate a specific requirement for Bcl9/Pygo in early mesodermal cardiac progenitors and in migrating cardiac neural crest cells, two key lineages during heart development. Mechanistically, the ß-catenin/BCL9/PYGO complex seems to control the expression of a specific subgroup of Wnt target genes including key transcription factors that are essential for different steps during heart patterning.

 

Loss of functional BCL9 proteins in mice results in pronounced heart defects (thinned myocardium of the ventricular walls; malformations of the forming septum, the atrio-ventricular valves and the outflow tract) and a reduced expression of a Wnt reporter (BATgal) in the outflow tract. Reproduced from Cantu et al Fig 3c-f.

 

How I believe this moves the field forward

The preprint from Cantù and colleagues identifies BCL9 and PYGO as essential tissue-specific co-factors of ß-catenin that selectively mediate the activation of canonical Wnt target genes during vertebrate cardiac development. In my view this is a significant finding as the presented results strongly imply that the reported genomic alterations in BCL9 genes in humans with congenital heart disease are indeed causative or at least contribute to the respective cardiac malformations found in patients. Therefore, this study gives important new insights into the molecular basis of congenital heart disease in humans.

 

Open questions

  • How is the tissue-specific activity of BCL9/PYGO brought about and how is it regulated? Is the (overlapping) expression of both genes restricted to the affected tissues?
  • Is there a common set of cardiac target genes downstream of BCL9/PYGO/ß-catenin signalling in mice and zebrafish that might also be misregulated in human patients?
  • Is the cardiac function of BCL9/PYGO restricted to early developmental processes or is this complex also required at later stages, e.g. in response to cardiac injury?

 

Further reading – useful reviews

Grant, M. G., Patterson, V. L., Grimes, D. T., Burdine, R. D. (2017) Modeling Syndromic Congenital Heart Defects in Zebrafish. Curr Top Dev Biol.;124:1-40.

Andersen, T. A., Troelsen, K. de L. L. & Larsen, L. A. (2013) Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 71, 1327–52.

Mosimann, C., Hausmann, G., Basler, K. (2009) Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nature Reviews. Molecular Cell Biology, 10(4):276-286.

Tags: cardiac development, disease model, mouse, wnt signalling, zebrafish

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    Rearing temperature and fatty acid supplementation jointly affect membrane fluidity and heat tolerance in Daphnia

    Dominik Martin-Creuzburg, Bret L. Coggins, Dieter Ebert, et al.



    Selected by Alexander Little

    A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in the spider Parasteatoda tepidariorum

    Christian L. B. Paese, Anna Schoenauer, Daniel J. Leite, et al.



    Selected by Erik Clark

    1

    Cell type-specific interchromosomal interactions as a mechanism for transcriptional diversity

    Adan Horta, Kevin Monahan, Lisa Bashkirova, et al.



    Selected by Boyan Bonev

    Germ layer specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm.

    Miguel Salinas-Saavedra, Amber Q. Rock, Mark Q. Martindale



    Selected by ClaireS & SophieM

    1

    Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development

    Andrew J Aman, Alexis N Fulbright, David M Parichy



    Selected by Andreas van Impel

    Tissue flow induces cell shape changes during organogenesis

    Gonca Erdemci-Tandogan, Madeline J.Clark, Jeffrey D. Amack, et al.



    Selected by Jacky G. Goetz

    Temporal Control of Transcription by Zelda in living Drosophila embryos

    Jeremy Dufourt, Antonio Trullo, Jennifer Hunter, et al.



    Selected by Teresa Rayon

    1

    An atlas of silencer elements for the human and mouse genomes

    Naresh Doni Jayavelu, Ajay Jajodia, Arpit Mishra, et al.



    Selected by Rafael Galupa

    1

    Genetically regulated human NODAL splice variants are differentially post-transcriptionally processed and functionally distinct

    Scott D Findlay, Olena Bilyk, Kiefer Lypka, et al.



    Selected by Pierre Osteil

    RNA-directed activation of cytoplasmic dynein-1 in reconstituted transport RNPs

    Mark A McClintock, Carly I Dix, Christopher M Johnson, et al.

    AND

    Recruitment of Two Dyneins to an mRNA-Dependent Bicaudal D Transport Complex

    Thomas E. Sladewski, Neil Billington, M. Yusuf Ali, et al.



    Selected by Dmitry Nashchekin

    Long-range Notch-mediated tissue patterning requires actomyosin contractility

    Ginger Hunter, Li He, Norbert Perrimon, et al.



    Selected by Yara E. Sánchez Corrales

    PIN7 auxin carrier is a terminator of radial root expansion in Arabidopsis thaliana

    Michel Ruiz Rosquete, Jurgen Kleine-Vehn

    AND

    PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana

    Elena Feraru, Mugurel I. I Feraru, Elke Barbez, et al.



    Selected by Erin Sparks

    Bioelectric-calcineurin signaling module regulates allometric growth and size of the zebrafish fin

    Jacob Daane, Jennifer Lanni, Ina Rothenberg, et al.



    Selected by Alberto Rosello-Diez

    1

    Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of cell division, differentiation, and loss

    Judy Martin, Erin Nicole Sanders, Paola Moreno-Roman, et al.



    Selected by Natalie Dye

    From spiral cleavage to bilateral symmetry: The developmental cell lineage of the annelid brain

    Pavel Vopalensky, Maria Antonietta Tosches, Kaia Achim, et al.



    Selected by Erik Clark

    A 3D model of human skeletal muscle innervated with stem cell-derived motor neurons enables epsilon-subunit targeted myasthenic syndrome studies

    Mohsen Afshar Bakooshli, Ethan S Lippmann, Ben Mulcahy, et al.



    Selected by Chris Demers

    Also in the genetics category:

    Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ)

    Scott J Callahan, Stephanie Tepan, Yan M Zhang, et al.



    Selected by Hannah Brunsdon

    PDX Finder: A Portal for Patient-Derived tumor Xenograft Model Discovery

    Nathalie Conte, Jeremy Mason, Csaba Halmagyi, et al.



    Selected by Carmen Adriaens

    Bioelectric-calcineurin signaling module regulates allometric growth and size of the zebrafish fin

    Jacob Daane, Jennifer Lanni, Ina Rothenberg, et al.



    Selected by Alberto Rosello-Diez

    1

    Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of cell division, differentiation, and loss

    Judy Martin, Erin Nicole Sanders, Paola Moreno-Roman, et al.



    Selected by Natalie Dye

    F-actin patches nucleated on chromosomes coordinate capture by microtubules in oocyte meiosis

    Mariia Burdyniuk, Andrea Callegari, Masashi Mori, et al.



    Selected by Binyam Mogessie

    Comprehensive characterization of transcript diversity at the human NODAL locus

    Scott D Findlay, Lynne-Marie Postovit



    Selected by Christian Ramos

    Cell-nonautonomous local and systemic responses to cell arrest enable long-bone catch-up growth

    Alberto Rosello-Diez, Linda Madisen, Sebastien Bastide, et al.



    Selected by Natalie Dye

    Precise temporal regulation of alternative splicing during neural development

    Sebastien M Weyn-Vanhentenryck, Huijuan Feng, Dmytro Ustianenko, et al.



    Selected by James Gagnon

    Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling

    Claudio Cantù, Anastasia Felker, Dario Zimmerli, et al.



    Selected by Andreas van Impel

    Insect wings and body wall evolved from ancient leg segments

    Heather S Bruce, Nipam H Patel

    AND

    Two sets of wing homologs in the crustacean, Parhyale hawaiensis

    Courtney M Clark-Hachtel, Yoshinori Tomoyasu



    Selected by Erik Clark

    2

    Close

    We want to make our website, and the services we provide, useful and reliable. This sometimes involves placing small amounts of information called cookies on the device you used to access the internet. If you continue to use this website we will assume you are happy to accept our cookies.

    Accept