Menu

Close

Optogenetic reconstitution reveals that Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble

Masako Okumura, Toyoaki Natsume, Masato T Kanemaki, Tomomi Kiyomitsu

Preprint posted on March 06, 2018 https://www.biorxiv.org/content/early/2018/03/06/277202

Let there be light! Shining light on spindle pulling forces using optogenetics.

Selected by Arnaud Monnard

Context

In this preprint, Okumura et al. used an optogenetic tool to target NuMA (nuclear mitotic apparatus, a protein required for proper mitotic spindle orientation) to subcortical structures. They chose to use the recently published tool – improved Light Inducible Dimer (iLID)1. Interest in and use of cellular optogenetic tools has increased in recent years and although the design of optogenetic tools might differ, their working principles are quite similar2. They largely consist of two protein binding partners in which the interaction between the proteins has been engineered such that they can only bind when exposed to a particular wavelength of light2.

In this preprint, the authors linked one such binding partner to the cell membrane while tagging NuMA-derived constructs and dynein with the second binding partner. In doing so they created photorecruitable versions of NuMA, which they were then able to recruit to subcortical regions using blue light (488 nm).

Additionally, one of the keys to achieving subcellular localization of a protein is successful disruption of the protein’s endogenous localization while minimizing the potential detrimental effects of this disruption. In this preprint, Okumura et al. successfully achieved this by using LGN RNAi, which disrupted NuMA endogenous localization and allowed them to specifically target it to subcortical regions using blue light.

The Preprint

The authors study NuMA (Mud in flies) spatiotemporal requirements to generate cortical pulling forces. During mitosis, correct spindle orientation and positioning ensures accurate chromosomal segregation3. NuMA plays a crucial role in spindle orientation, a key process in symmetric and asymmetric dividing cells. For example, in asymmetrically dividing Drosophila neuroblasts, spindle orientation in mudmutants is compromised, while the apical-basal polarity axis is maintained4. Using cellular optogenetics and triple knock-in cell lines the authors were able to specifically target endogenous NuMA and dynein to subcortical domains. They initially found that targeting NuMA to the cortex is sufficient to generate pulling forces on microtubules. Subsequently, they showed that targeting cortical dynein alone to the cortex is not sufficient to generate pulling forces.

Adapted from Okumura et al. with permission. Final model showing recruitment and assembly of dynein-dynactin-NuMA (DDN) complex

Following these results, the authors decided to conduct a truncation analysis on NuMA to elucidate the precise role and spatiotemporal requirements of the protein’s domains in generating pulling forces. They found that NuMA recruits dynein dynactin via its N terminus and that the C terminus is required for pulling and proper spindle orientation. Together, these results demonstrate the precise spatiotemporal requirements of NuMA and the fact that NuMA is sufficient to orient the spindle and generate pulling forces.

 

Why I chose this preprint

I was attracted to this preprint based on the elegant technical approach that the authors used to elucidate the biological function of dynein-dynactin-NuMA complexes. I was particularly enthusiastic about the endogenous tagging of NuMA, thus minimizing additional cellular perturbations. The growing use of optogenetic tools combined with live-cell imaging will help us to extend our knowledge of dynamic biological processes, while maintaining physiological conditions as much as possible. Moreover, the expansion of this technology to cells in their native environment – such as in intact organisms and intact tissues – offers novel prospects for cell and molecular biology.

 

Questions for the authors

Using your triple knock-in cell lines, have you been able to or tried to create asymmetric cell division?

If so, do you observe a difference in cell fate between the artificially created small and large cell?

 

References

  1. Guntas, G.et al.Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl. Acad. Sci.112,112–117 (2015).
  2. Guglielmi, G., Falk, H. J. & De Renzis, S. Optogenetic Control of Protein Function: From Intracellular Processes to Tissue Morphogenesis. Futur. Cell Biol.4,1–11 (2016).
  3. di Pietro, F., Echard, A. & Morin, X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep.17,1106–30 (2016).
  4. Siller, K. H., Cabernard, C. & Doe, C. Q. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat. Cell Biol.8,594–600 (2006).

 

The Welburn lab have also highlighted this preprint, check out their post here 

 

Tags: optogenetics

Posted on: 15th May 2018

Read preprint (No Ratings Yet)




  • Author's response

    Tomomi Kiyomitsu shared

    Using your triple knock-in cell lines, have you been able to or tried to create asymmetric cell division?
    I have tried, but I could create only slightly unequal-sized daughter cells. I found that asymmetric membrane elongation partially rectifies light-induced spindle displacement during anaphase.

    Thus, it might be important to control both cortical spindle-pulling forces and membrane elongation for generating extremely unequal-sized daughter cells in symmetrically dividing human cells.

     

    If so, do you observe a difference in cell fate between the artificially created small and large cell?

    If I could, I would love to analyze a difference in cell fate between daughters.

    Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    The cytoskeleton as a smart composite material: A unified pathway linking microtubules, myosin-II filaments and integrin adhesions

    Nisha Mohd Rafiq, Yukako Nishimura, Sergey V. Plotnikov, et al.



    Selected by Coert Margadant

    Quantitative, real-time, single cell analysis in tissue reveals expression dynamics of neurogenesis

    Cerys S Manning, Veronica Biga, James Boyd, et al.



    Selected by Teresa Rayon

    Profiling the surface proteome identifies actionable biology for TSC1 mutant cells beyond mTORC1 signaling

    Junnian Wei, Kevin K. Leung, Charles Truillet, et al.



    Selected by Rob Hynds

    1

    Optogenetic dissection of mitotic spindle positioning in vivo

    Lars-Eric Fielmich, Ruben Schmidt, Daniel J Dickinson, et al.



    Selected by Angika Basant

    1

    Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo.

    Jonathan B Michaux, Francois B Robin, William M McFadden, et al.



    Selected by Sundar Naganathan

    Moving beyond P values: Everyday data analysis with estimation plots

    Joses Ho, Tayfun Tumkaya, Sameer Aryal, et al.



    Selected by Gautam Dey

    1

    A limited number of double-strand DNA breaks are sufficient to delay cell cycle progression.

    Jeroen van den Berg, Anna G. Manjon, Karoline Kielbassa, et al.



    Selected by Leighton Daigh

    Optogenetic manipulation of medullary neurons in the locust optic lobe

    Hongxia Wang, Richard B. Dewell, Markus U. Ehrengruber, et al.



    Selected by Ana Patricia Ramos

    JNK-mediated spindle reorientation in stem cells promotes dysplasia in the aging intestine

    Daniel Hu, Heinrich Jasper



    Selected by Maiko Kitaoka

    ER-to-Golgi trafficking of procollagen in the absence of large carriers.

    Janine McCaughey, Nicola Stevenson, Stephen Cross, et al.



    Selected by Gautam Dey

    1

    Template switching causes artificial junction formation and false identification of circular RNAs

    Chong Tang, Tian Yu, Yeming Xie, et al.



    Selected by Fabio Liberante

    Mechanosensitive binding of p120-Catenin at cell junctions regulates E-Cadherin turnover and epithelial viscoelasticity

    K. Venkatesan Iyer, Romina Piscitello-Gómez, Frank Jülicher, et al.



    Selected by Ivana Viktorinová

    Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon

    Jessica Messier, Hongmei Chen, Zhao-Lin Cai, et al.

    AND

    High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins

    Mathias Mahn, Lihi Gibor, Katayun Cohen-Kashi Malina, et al.



    Selected by Mahesh Karnani

    2

    EFFECTORS OF THE SPINDLE ASSEMBLY CHECKPOINT BUT NOT THE MITOTIC EXIT NETWORK ARE CONFINED WITHIN THE NUCLEUS OF SACCHAROMYCES CEREVISIAE

    Lydia R Heasley, Jennifer G DeLuca, Steven M Markus



    Selected by Hiral Shah

    An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics

    Ilias Angelidis, Lukas M Simon, Isis E Fernandez, et al.



    Selected by Rob Hynds

    1

    Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses

    Kristina Zahonova, Zoltan Fussy, Erik Bircak, et al.



    Selected by Ellis O'Neill

    1

    Also in the molecular biology category:

    Quantitative, real-time, single cell analysis in tissue reveals expression dynamics of neurogenesis

    Cerys S Manning, Veronica Biga, James Boyd, et al.



    Selected by Teresa Rayon

    The cis-regulatory logic underlying abdominal Hox-mediated repression versus activation of regulatory elements in Drosophila



    Selected by Clarice Hong

    1

    Moving beyond P values: Everyday data analysis with estimation plots

    Joses Ho, Tayfun Tumkaya, Sameer Aryal, et al.



    Selected by Gautam Dey

    1

    A limited number of double-strand DNA breaks are sufficient to delay cell cycle progression.

    Jeroen van den Berg, Anna G. Manjon, Karoline Kielbassa, et al.



    Selected by Leighton Daigh

    Template switching causes artificial junction formation and false identification of circular RNAs

    Chong Tang, Tian Yu, Yeming Xie, et al.



    Selected by Fabio Liberante

    Dynamics and interactions of ADP/ATP transporter AAC3 in DPC detergent are not functionally relevant

    Vilius Kurauskas, Audrey Hessel, François Dehez, et al.

    AND

    Major concerns with the integrity of the mitochondrial ADP/ATP carrier in dodecyl-phosphocholine used for solution NMR studies

    Martin S. King, Paul G. Crichton, Jonathan J. Ruprecht, et al.



    Selected by Reid Alderson

    1

    Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon

    Jessica Messier, Hongmei Chen, Zhao-Lin Cai, et al.

    AND

    High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins

    Mathias Mahn, Lihi Gibor, Katayun Cohen-Kashi Malina, et al.



    Selected by Mahesh Karnani

    2

    Glutamic acid is a carrier for hydrazine during the biosyntheses of fosfazinomycin and kinamycin

    Kwo-Kwang Abraham Wang, Tai L. Ng, Peng Wang, et al.



    Selected by Ellis O'Neill

    The Histone H3-H4 Tetramer is a Copper Reductase Enzyme

    Narsis Attar, Oscar A Campos, Maria Vogelauer, et al.



    Selected by Lauren Neves

    Super-Mendelian inheritance mediated by CRISPR/Cas9 in the female mouse germline

    Hannah A. Grunwald, Valentino M. Gantz, Gunnar Poplawski, et al.



    Selected by Rebekah Tillotson

    1

    EFFECTORS OF THE SPINDLE ASSEMBLY CHECKPOINT BUT NOT THE MITOTIC EXIT NETWORK ARE CONFINED WITHIN THE NUCLEUS OF SACCHAROMYCES CEREVISIAE

    Lydia R Heasley, Jennifer G DeLuca, Steven M Markus



    Selected by Hiral Shah

    TTL proteins scaffold brassinosteroid signaling components at the plasma membrane to optimize signal transduction in plant cells

    Vitor Amorim-Silva, Alvaro Garcia-Moreno, Araceli G Castillo, et al.



    Selected by Martin Balcerowicz

    1

    OptoGranules reveal the evolution of stress granules to ALS-FTD pathology

    Peipei Zhang, Baochang Fan, Peiguo Yang, et al.



    Selected by Srivats Venkataramanan

    1

    Large-scale, quantitative protein assays on a high-throughput DNA sequencing chip

    Curtis J Layton, Peter L McMahon, William J Greenleaf



    Selected by Samantha Seah

    A robust method for transfection in choanoflagellates illuminates their cell biology and the ancestry of animal septins

    David Booth, Heather Middleton, Nicole King



    Selected by Maya Emmons-Bell

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Jesse R Raab, Keriayn N Smith, Camarie C Spear, et al.



    Selected by Carmen Adriaens

    1

    Close