Menu

Close

Optogenetic reconstitution reveals that Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble

Masako Okumura, Toyoaki Natsume, Masato T Kanemaki, Tomomi Kiyomitsu

Preprint posted on March 06, 2018 https://www.biorxiv.org/content/early/2018/03/06/277202

Let there be light! Shining light on spindle pulling forces using optogenetics.

Selected by Arnaud Monnard

Context

In this preprint, Okumura et al. used an optogenetic tool to target NuMA (nuclear mitotic apparatus, a protein required for proper mitotic spindle orientation) to subcortical structures. They chose to use the recently published tool – improved Light Inducible Dimer (iLID)1. Interest in and use of cellular optogenetic tools has increased in recent years and although the design of optogenetic tools might differ, their working principles are quite similar2. They largely consist of two protein binding partners in which the interaction between the proteins has been engineered such that they can only bind when exposed to a particular wavelength of light2.

In this preprint, the authors linked one such binding partner to the cell membrane while tagging NuMA-derived constructs and dynein with the second binding partner. In doing so they created photorecruitable versions of NuMA, which they were then able to recruit to subcortical regions using blue light (488 nm).

Additionally, one of the keys to achieving subcellular localization of a protein is successful disruption of the protein’s endogenous localization while minimizing the potential detrimental effects of this disruption. In this preprint, Okumura et al. successfully achieved this by using LGN RNAi, which disrupted NuMA endogenous localization and allowed them to specifically target it to subcortical regions using blue light.

The Preprint

The authors study NuMA (Mud in flies) spatiotemporal requirements to generate cortical pulling forces. During mitosis, correct spindle orientation and positioning ensures accurate chromosomal segregation3. NuMA plays a crucial role in spindle orientation, a key process in symmetric and asymmetric dividing cells. For example, in asymmetrically dividing Drosophila neuroblasts, spindle orientation in mudmutants is compromised, while the apical-basal polarity axis is maintained4. Using cellular optogenetics and triple knock-in cell lines the authors were able to specifically target endogenous NuMA and dynein to subcortical domains. They initially found that targeting NuMA to the cortex is sufficient to generate pulling forces on microtubules. Subsequently, they showed that targeting cortical dynein alone to the cortex is not sufficient to generate pulling forces.

Adapted from Okumura et al. with permission. Final model showing recruitment and assembly of dynein-dynactin-NuMA (DDN) complex

Following these results, the authors decided to conduct a truncation analysis on NuMA to elucidate the precise role and spatiotemporal requirements of the protein’s domains in generating pulling forces. They found that NuMA recruits dynein dynactin via its N terminus and that the C terminus is required for pulling and proper spindle orientation. Together, these results demonstrate the precise spatiotemporal requirements of NuMA and the fact that NuMA is sufficient to orient the spindle and generate pulling forces.

 

Why I chose this preprint

I was attracted to this preprint based on the elegant technical approach that the authors used to elucidate the biological function of dynein-dynactin-NuMA complexes. I was particularly enthusiastic about the endogenous tagging of NuMA, thus minimizing additional cellular perturbations. The growing use of optogenetic tools combined with live-cell imaging will help us to extend our knowledge of dynamic biological processes, while maintaining physiological conditions as much as possible. Moreover, the expansion of this technology to cells in their native environment – such as in intact organisms and intact tissues – offers novel prospects for cell and molecular biology.

 

Questions for the authors

Using your triple knock-in cell lines, have you been able to or tried to create asymmetric cell division?

If so, do you observe a difference in cell fate between the artificially created small and large cell?

 

References

  1. Guntas, G.et al.Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl. Acad. Sci.112,112–117 (2015).
  2. Guglielmi, G., Falk, H. J. & De Renzis, S. Optogenetic Control of Protein Function: From Intracellular Processes to Tissue Morphogenesis. Futur. Cell Biol.4,1–11 (2016).
  3. di Pietro, F., Echard, A. & Morin, X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep.17,1106–30 (2016).
  4. Siller, K. H., Cabernard, C. & Doe, C. Q. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat. Cell Biol.8,594–600 (2006).

 

The Welburn lab have also highlighted this preprint, check out their post here 

 

Tags: optogenetics

Posted on: 15th May 2018

Read preprint (No Ratings Yet)




  • Author's response

    Tomomi Kiyomitsu shared

    Using your triple knock-in cell lines, have you been able to or tried to create asymmetric cell division?
    I have tried, but I could create only slightly unequal-sized daughter cells. I found that asymmetric membrane elongation partially rectifies light-induced spindle displacement during anaphase.

    Thus, it might be important to control both cortical spindle-pulling forces and membrane elongation for generating extremely unequal-sized daughter cells in symmetrically dividing human cells.

     

    If so, do you observe a difference in cell fate between the artificially created small and large cell?

    If I could, I would love to analyze a difference in cell fate between daughters.

    Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    Bridging the divide: bacteria synthesizing archaeal membrane lipids

    Laura Villanueva, F. A. Bastiaan von Meijenfeldt, Alexander B. Westbye, et al.

    AND

    Extensive transfer of membrane lipid biosynthetic genes between Archaea and Bacteria

    Gareth A. Coleman, Richard D. Pancost, Tom A. Williams



    Selected by Gautam Dey

    Revealing the nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy

    Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, et al.



    Selected by Gautam Dey

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    Lysosome exocytosis is required for mitosis

    Charlotte Nugues, Nordine Helassa, Robert Burgoyne, et al.



    Selected by claudia conte

    Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis

    Min Zhu, Hirotaka Tao, Mohammad Samani, et al.



    Selected by Natalie Dye

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    3D Tissue elongation via ECM stiffness-cued junctional remodeling

    Dong-Yuan Chen, Justin Crest, Sebastian J Streichan, et al.



    Selected by Sundar Naganathan

    Transient intracellular acidification regulates the core transcriptional heat shock response

    Catherine G Triandafillou, Christopher D Katanski, Aaron R Dinner, et al.



    Selected by Srivats Venkataramanan

    1

    Budding yeast complete DNA replication after chromosome segregation begins

    Tsvetomira Ivanova, Michael Maier, Alsu Missarova, et al.



    Selected by Gautam Dey, Maiko Kitaoka

    Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing

    Qingyun Li, Zuolin Cheng, Lu Zhou, et al.



    Selected by Zheng-Shan Chong

    SABER enables highly multiplexed and amplified detection of DNA and RNA in cells and tissues

    Jocelyn Y. Kishi, Brian J. Beliveau, Sylvain W. Lapan, et al.



    Selected by Yen-Chung Chen

    PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection

    Catherine M Buckley, Victoria L Heath, Aurelie Gueho, et al.



    Selected by Giuliana Clemente

    1

    Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

    Sydney M Shaffer, Benjamin L Emert, Ann E. Sizemore, et al.



    Selected by Leighton Daigh

    1

    Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

    Kerstin Klinkert, Nicolas Levernier, Peter Gross, et al.

    AND

    Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

    Sachin Kotak, Sukriti Kapoor



    Selected by Giuliana Clemente

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.



    Selected by Coert Margadant

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    Also in the molecular biology category:

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Target-specific precision of CRISPR-mediated genome editing

    Anob M Chakrabarti, Tristan Henser-Brownhill, Josep Monserrat, et al.



    Selected by Rob Hynds

    1

    Transient intracellular acidification regulates the core transcriptional heat shock response

    Catherine G Triandafillou, Christopher D Katanski, Aaron R Dinner, et al.



    Selected by Srivats Venkataramanan

    1

    Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

    Sydney M Shaffer, Benjamin L Emert, Ann E. Sizemore, et al.



    Selected by Leighton Daigh

    1

    Site-specific K63 ubiquitinomics reveals post-initiation regulation of ribosomes under oxidative stress

    Songhee Back, Christine Vogel, Gustavo M Silva



    Selected by Srivats Venkataramanan

    1

    Quantitative, real-time, single cell analysis in tissue reveals expression dynamics of neurogenesis

    Cerys S Manning, Veronica Biga, James Boyd, et al.



    Selected by Teresa Rayon

    The cis-regulatory logic underlying abdominal Hox-mediated repression versus activation of regulatory elements in Drosophila



    Selected by Clarice Hong

    1

    Moving beyond P values: Everyday data analysis with estimation plots

    Joses Ho, Tayfun Tumkaya, Sameer Aryal, et al.



    Selected by Gautam Dey

    1

    A limited number of double-strand DNA breaks are sufficient to delay cell cycle progression.

    Jeroen van den Berg, Anna G. Manjon, Karoline Kielbassa, et al.



    Selected by Leighton Daigh

    Template switching causes artificial junction formation and false identification of circular RNAs

    Chong Tang, Tian Yu, Yeming Xie, et al.



    Selected by Fabio Liberante

    Dynamics and interactions of ADP/ATP transporter AAC3 in DPC detergent are not functionally relevant

    Vilius Kurauskas, Audrey Hessel, François Dehez, et al.

    AND

    Major concerns with the integrity of the mitochondrial ADP/ATP carrier in dodecyl-phosphocholine used for solution NMR studies

    Martin S. King, Paul G. Crichton, Jonathan J. Ruprecht, et al.



    Selected by Reid Alderson

    1

    Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon

    Jessica Messier, Hongmei Chen, Zhao-Lin Cai, et al.

    AND

    High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins

    Mathias Mahn, Lihi Gibor, Katayun Cohen-Kashi Malina, et al.



    Selected by Mahesh Karnani

    2

    Glutamic acid is a carrier for hydrazine during the biosyntheses of fosfazinomycin and kinamycin

    Kwo-Kwang Abraham Wang, Tai L. Ng, Peng Wang, et al.



    Selected by Ellis O'Neill

    The Histone H3-H4 Tetramer is a Copper Reductase Enzyme

    Narsis Attar, Oscar A Campos, Maria Vogelauer, et al.



    Selected by Lauren Neves

    Super-Mendelian inheritance mediated by CRISPR/Cas9 in the female mouse germline

    Hannah A. Grunwald, Valentino M. Gantz, Gunnar Poplawski, et al.



    Selected by Rebekah Tillotson

    1

    Close