Menu

Close

Optogenetic reconstitution reveals that Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble

Masako Okumura, Toyoaki Natsume, Masato T Kanemaki, Tomomi Kiyomitsu

Preprint posted on March 06, 2018 https://www.biorxiv.org/content/early/2018/03/06/277202

NuMA in the spotlight: Optogenetic activation shows that Dynein-Dynactin-NuMA clusters take centre stage during spindle positioning

Selected by Ben Craske, Thibault Legal and Toni McHugh

Categories: cell biology

Context:

Mitotic cortical force machinery assembles on the plasma membrane and provides pulling forces on astral microtubules (MTs) that are important for the correct positioning of the spindle.  Correct spindle positioning is important for both symmetric and asymmetric divisions, determining both cell size and fate following segregation of genetic material. In human cells, this machinery consists of the cortically anchored complex of Nuclear Mitotic Apparatus protein (NuMA), LGN and G alpha i (NuMA-LGN-Gαi), with cytoplasmic dynein and dynactin. The complex generates pulling forces on astral MTs through dynein’s minus-end directed motility and/or the control of MT dynamics. The authors use a light-induced membrane tethering system (iLID) to assess the mechanism by which NuMA contributes to cortical force generation (Figure 1A).

Key Findings:

Using the iLID system, the authors show that spindles displace towards light-activated regions of the cortex upon NuMA, Dynein Heavy Chain (DHC) and p150 recruitment, and are able to show that repositioning of the light-induced cortical NuMA allows rotational reorientation of spindles. Although dynein-dynactin is required for cortical pulling, it is not sufficient for spindle displacement in the absence of NuMA. It contains a 200nm long central coiled-coil domain that is necessary for spindle pulling, and two additional microtubule-binding domains in the C-terminus. Together with dynein-dynactin, these regions allow NuMA clusters to efficiently capture and maintain associations with the plus-tips of astral microtubules in order to generate cortical pulling forces that are required for spindle positioning.

Figure 1A: Diagram summarising cortical complexes in the indicated conditions (from Okumura et al. 2018, reproduced with permission from the authors)

 

Why we chose this preprint:

We were drawn to this preprint thanks to the authors’ elegant use of a light induced system to reconstitute spindle pulling forces at the cortex. This preprint further highlights the power of using optogenetic tools to investigate protein function with precise spatial and temporal control, with the potential for much wider applications within other areas of cell biology. Here, by targeting the dynein-dynactin-NuMA (DDN) complex to the cortex, they further elucidate the underlying mechanisms controlling spindle positioning which is a topic of great interest to our lab.

Open Questions:

This paper makes a significant step in dissecting the mechanism of cortical pulling by highlighting the requirement for both active dynein and additional microtubule-binding domains in NuMA to generate cortical forces. The authors note that NuMA tends to form distinct punctae on the membrane and hypothesize that it may be forming a higher-order complex in order to generate force. What might this structure look like? Finally, the authors show that slow spindle displacement can even be seen when microtubules are taxol-stabilized, removing microtubule depolymerisation at the cortex. In this case, what role are microtubule dynamics and pushing on the cortex playing during the process of spindle centering?

 

Posted on: 10th May 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    Bridging the divide: bacteria synthesizing archaeal membrane lipids

    Laura Villanueva, F. A. Bastiaan von Meijenfeldt, Alexander B. Westbye, et al.

    AND

    Extensive transfer of membrane lipid biosynthetic genes between Archaea and Bacteria

    Gareth A. Coleman, Richard D. Pancost, Tom A. Williams



    Selected by Gautam Dey

    Revealing the nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy

    Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, et al.



    Selected by Gautam Dey

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    Lysosome exocytosis is required for mitosis

    Charlotte Nugues, Nordine Helassa, Robert Burgoyne, et al.



    Selected by claudia conte

    Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis

    Min Zhu, Hirotaka Tao, Mohammad Samani, et al.



    Selected by Natalie Dye

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    3D Tissue elongation via ECM stiffness-cued junctional remodeling

    Dong-Yuan Chen, Justin Crest, Sebastian J Streichan, et al.



    Selected by Sundar Naganathan

    Transient intracellular acidification regulates the core transcriptional heat shock response

    Catherine G Triandafillou, Christopher D Katanski, Aaron R Dinner, et al.



    Selected by Srivats Venkataramanan

    1

    Budding yeast complete DNA replication after chromosome segregation begins

    Tsvetomira Ivanova, Michael Maier, Alsu Missarova, et al.



    Selected by Gautam Dey, Maiko Kitaoka

    Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing

    Qingyun Li, Zuolin Cheng, Lu Zhou, et al.



    Selected by Zheng-Shan Chong

    SABER enables highly multiplexed and amplified detection of DNA and RNA in cells and tissues

    Jocelyn Y. Kishi, Brian J. Beliveau, Sylvain W. Lapan, et al.



    Selected by Yen-Chung Chen

    PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection

    Catherine M Buckley, Victoria L Heath, Aurelie Gueho, et al.



    Selected by Giuliana Clemente

    1

    Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

    Sydney M Shaffer, Benjamin L Emert, Ann E. Sizemore, et al.



    Selected by Leighton Daigh

    1

    Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

    Kerstin Klinkert, Nicolas Levernier, Peter Gross, et al.

    AND

    Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

    Sachin Kotak, Sukriti Kapoor



    Selected by Giuliana Clemente

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.



    Selected by Coert Margadant

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    Close