Menu

Close

Human alveolar Type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells during alveolar repair

Jaymin J. Kathiriya, Chaoqun Wang, Alexis Brumwell, Monica Cassandras, Claude Le Saux, Paul Wolters, Michael Matthay, Harold A Chapman, Tien Peng

Preprint posted on June 06, 2020 https://www.biorxiv.org/content/10.1101/2020.06.06.136713v1

Alveolar epithelial cells transdifferentiate into basal cells to repair the lung!

Selected by Julio Sainz de Aja

Categories: cell biology

By using different co-culturing cells in vitro, the authors have found that AT2 cells are able to transdifferentiate into basal cells, the cells that can give rise to any cell type in the lung. They show that by transplanting AT2 cells to injured mice lungs, the same transdifferentiation occurs.

 

Background

The lung is a complex organ in charge of the gas exchange between the air and our blood. It has two differentiated structures: airways and alveoli. These two structures have specific functions that make the respiratory system very efficient in gas exchange, while protecting the lung epithelia from microorganisms and particles that are inhaled on a daily basis. Alveolar type 2 (AT2) cells are the epithelial cells in the lung responsible for surfactant production. They can self-renew and give rise to alveolar type 1 (AT1) cells, the epithelial cells that are in charge of gas exchange in the lung. Upon injury, it is well described how AT2 cells give rise to AT1 cells to regenerate the alveoli and recover the lung function (Barkauskas et al., 2013). The same way AT2 cells maintain the homeostasis of the alveoli, basal cells are the cells that maintain the airway of the lung in homeostasis and injury. Basal cells can differentiate into any cell type in the airway (ciliated, club, goblet cells…) (Rock et al., 2010). At the same time, club cells and BASC, differentiated from basal cells, can give rise to AT2 (Kim et al., 2005; Zheng et al., 2017). So far, this is the way the field knew the AT2 cell differentiation path worked.

 

Key findings

The authors show that:

Human AT2 cells can transdifferentiate into basal cells in vitro: hAT2 cells are usually cultured with lung embryonic fibroblast (MrC5), that allow for hAT2 organoid growth. In this work, the authors co-cultured the hAT2 with adult human lung mesenchyme (AHLM) cells. This change in the feeder cells generates a loss of AT2 markers in the organoids, that at the same time gain KRT5 and KRT14, markers of basal cells.

Niche factors are crucial for AT2 to basal cell transdifferentiation: Transcriptome analysis of hAT2 organoids cultured both in MrC5 and AHML showed that BMP activation is downregulated in hAT2 co-cultured with AHML. Using BMP4 on the hAT2 culture showed decreased KRT5 expression. At the same time, HHIP, a decoy receptor of hedgehog (Hh) that sequesters Hh ligands is highly expressed in mature hAT2. HHIP treatment of the hAT2 organoids also decreased the expression of KRT5, in line with the BMP4 treatment.

Human AT2 engrafted into fibrotic mice also transdifferentiate into basal cells: The authors transplanted hAT2 cells into immune-defficient (NSG) mice with fibrotic lungs. Engraftments were analyzed 20 days after transplantation and patches of human cells were observed within the mouse lungs. A specific antibody against human cells (HNA) was used to distinguish human from mouse cells. Those patches of human cells were either KRT5+ (basal) or SPC+ (AT2), and markers for alveolar-basal intermediate (ABI) within the SPC+ population. These results demonstrate that this transdifferentiation can also occur in vivo in a model of lung fibrosis.

 

What I like about this preprint

The description of AT2 cells giving rise to basal cells is something that changes the downstream paradigm of lung cell differentiation from basal cells downwards. The authors not only describe this transdifferentiation in vitro, but also show that it happens upon lung transplantation in fibrotic mice. It seems that this type of transdifferentiation could be a good model to study idiopathic pulmonary fibrosis (IPF), which is a deadly disease for which we still don’t have a good in vitro model. In this preprint, a new intermediate population is revealed, the ABI cells that are the ones that give rise to metaplastic basal cells. Altogether, this work provides an interesting tool to study IPF and uncovers a newfound plasticity of the AT2 cells that was previously unknown.

 

Questions for the authors

The first question I had when I first read this preprint was how functional were these transdifferentiated basal cells. Therefore, my questions to the authors are regarding this subject.

Would you say that this transdifferentiation occurs always until the basal cell is finally generated? Or could the intermediates give rise to other cells such as club cells or ciliated cells?

Do the transdifferentiated basal cells occupy the upper airway in the transplanted mice or any lung site preferentially?

 

 

 

Bibliography

Barkauskas, C. E., Cronce, M. J., Rackley, C. R., Bowie, E. J., Keene, D. R., Stripp, B. R., Randell, S. H., Noble, P. W., & Hogan, B. L. M. (2013). Type 2 alveolar cells are stem cells in adult lung. Journal of Clinical Investigation, 123(7), 3025–3036. https://doi.org/10.1172/JCI68782

Kim, C. F. B., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R. T., & Jacks, T. (2005). Identification of Bronchioalveolar Stem Cells in Normal Lung and Lung Cancer. Cell, 121(6), 823–835. https://doi.org/10.1016/j.cell.2005.03.032

Rock, J. R., Randell, S. H., & Hogan, B. L. M. (2010). Airway basal stem cells: A perspective on their roles in epithelial homeostasis and remodeling. Disease Models & Mechanisms, 3(9–10), 545–556. https://doi.org/10.1242/dmm.006031

Zheng, D., Soh, B.-S., Yin, L., Hu, G., Chen, Q., Choi, H., Han, J., Chow, V. T. K., & Chen, J. (2017). Differentiation of Club Cells to Alveolar Epithelial Cells In Vitro. Scientific Reports, 7. https://doi.org/10.1038/srep41661

Tags: at2, basal cell, fibrosis, ipf, lung, lung repair, stem cell, transdifferentiation

Posted on: 24th July 2020 , updated on: 27th July 2020

doi: https://doi.org/10.1242/prelights.23417

Read preprint (No Ratings Yet)




Author's response

Chaoqun Wang shared

Would you say that this transdifferentiation occurs always until the basal cell is finally generated? Or could the intermediates give rise to other cells such as club cells or ciliated cells?

We believe that the overwhelming majority of club and ciliated cells are likely generated from the transdifferentiated basal cells. This is based on our observation that basal cell differentiation from AEC2s precede the presence of club and ciliated cells in culture, which is also supported by in silico analysis of differentiation trajectory using RNA velocity. 

 

Do the transdifferentiated basal cells occupy the upper airway in the transplanted mice or any lung site preferentially?

The engrafted human epithelium exclusively appears in the alveoli where the injury occurs in the bleomycin murine model.

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

preLists in the cell biology category:

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

Planar Cell Polarity – PCP

This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.

 



List by Ana Dorrego-Rivas

BioMalPar XVI: Biology and Pathology of the Malaria Parasite

[under construction] Preprints presented at the (fully virtual) EMBL BioMalPar XVI, 17-18 May 2020 #emblmalaria

 



List by Gautam Dey, Samantha Seah

1

Cell Polarity

Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.

 



List by Yamini Ravichandran

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20

 



List by Maiko Kitaoka, Madhuja Samaddar, Miguel V. Almeida, Sejal Davla, Jennifer Ann Black, Gautam Dey

3D Gastruloids

A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells). Preprint missing? Don't hesitate to let us know.

 



List by Paul Gerald L. Sanchez and Stefano Vianello

ECFG15 – Fungal biology

Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome

 



List by Hiral Shah

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar, Ramona Jühlen, Amanda Haage, Laura McCormick, Maiko Kitaoka

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

 



List by Gautam Dey

Autophagy

Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.

 



List by Sandra Malmgren Hill

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.

 



List by Rob Hynds

Cellular metabolism

A curated list of preprints related to cellular metabolism at Biorxiv by Pablo Ranea Robles from the Prelights community. Special interest on lipid metabolism, peroxisomes and mitochondria.

 



List by Pablo Ranea Robles

BSCB/BSDB Annual Meeting 2019

Preprints presented at the BSCB/BSDB Annual Meeting 2019

 



List by Gautam Dey

MitoList

This list of preprints is focused on work expanding our knowledge on mitochondria in any organism, tissue or cell type, from the normal biology to the pathology.

 



List by Sandra Franco Iborra

Biophysical Society Annual Meeting 2019

Few of the preprints that were discussed in the recent BPS annual meeting at Baltimore, USA

 



List by Joseph Jose Thottacherry

ASCB/EMBO Annual Meeting 2018

This list relates to preprints that were discussed at the recent ASCB conference.

 



List by Gautam Dey, Amanda Haage
Close