Menu

Close

A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, Melissa Sanchez, Jenni Durieux, Sarah U Tronnes, Joseph W Paul, Daniel J Esping, Samira Monshietehadi, Melissa G Metcalf, Andrew Dillin

Preprint posted on December 17, 2018 https://www.biorxiv.org/content/early/2018/11/15/471177

A neuronal stress response mediates longevity via cross-tissue signalling and upregulation of lipophagy

Selected by Sandra Malmgren Hill

Context

Aging is defined as a time-dependent increase in mortality, and is thought to be caused by a loss of homeostasis and systemic collapse due to the build-up of harmful material1. As damaged components such as dysfunctional proteins and organelles accumulate in the cells of an aging organism, this induces a range of genetic responses in an attempt to combat the increase in stress. It has been shown that stress responses between different organelles in the cell are interconnected to provide increased buffering and robustness2. However, little is known about how cells in different tissues of an organism are connected and can signal to each other to warn about impeding danger. In a previous study, the authors of this preprint showed that in C. elegans, the accumulation of misfolded proteins in the endoplasmic reticulum (ER) of neurons induces an unfolded protein response (UPRER) that is transmitted throughout the organism to yield a similar response in cells of the intestine3. The group showed that cells of the intestine responded by inducing the heatshock response, and that this cell non-autonomous signalling counteracted the age-related loss of protein quality control4, and improved longevity.

In the study highlighted by this prelight, the authors expand on their findings and present data that the induction of heatshock response might not be the whole story. They show that the UPRER induced signal from neurons causes a dramatic remodelling of ER and lipid content of intestinal cells and that these events, rather than the induced heatshock response, are responsible for the observed lifespan extension.

 

Major findings

The authors use a long-lived model of the nematode C. elegans (median age 24 days compared to 20 days in wildtype), which harbours a constitutively active unfolded response of the ER (UPRER) in its neuronal cells. This is achieved by tissue specific overexpression of the spliced version of the transcription factor XBP-1, bypassing the need of IRE-1 activation for UPR induction5. The authors then study the cell non-autonomous response in the cells of the intestine and identify a striking morphological change of the ER in early adulthood of these animals. Using a fluorescent marker of the ER lumen, the authors describe the formation of circular ER-derived membranes (CERMs) in the intestine. These structures are only seen in animals with neuronal xbp-1 overexpression and are visible only at day 4 of adulthood, after which they seem to disappear. Furthermore, the formation of these CERMs is dependent on expression of xbp-1 also in the peripheral tissue, but does not require the induction of the canonical UPR response. Interestingly, CERM formation is not observed when using a systemic overexpression of xbp-1, although these animals still overexpress xbp-1 in neurons, indicating that there might be some kind of feedback signalling.

Using a sorter based LAMPro technology6 the authors were able to analyze whole-body neutral lipid contents and found that the neuronal induction of UPRER caused drastic lipid depletion in intestinal cells. This lipid depletion was explained by an increase in intestinal secretion and degradation of lipid droplets (LDs) by lipophagy. In agreement with an increase in lipophagy upon xbp-1 overexpression, the authors found an increase in the number of lysosomes in the intestinal cells, and they identified the RAB-10/EHBP-1/RME-1 lipophagy complex as being essential for lipid depletion and lifespan extension. This complex was however not essential for the induction of UPRER in the intestine, demonstrating that the effects on ER-remodelling and lipophagy can be uncoupled from the canonical heatshock.

Taken together, the data presented in this pre-print highlight a novel mechanism of cross-tissue signalling, where a neuronal stress response mediates longevity via tissue-specific upregulation of lipophagy.

From figure 5 of the pre-print: Upon constitutive induction of UPRER in neurons, mediated by xbp-1 overexpression, a small ER-stress signal (SERSS) is transmitted to the cells of the intestine. This induces a canonical heatshock response, with upregulation of several chaperones, but also leads to a non-canonical response with ER remodelling and EHBP-1 dependent lipophagy. These cell non autonomous responses to UPRER leads to increased stress resistance and longevity.

 

Why I chose this pre-print

Research on the molecular mechanisms of aging is of great importance, as it is the most predominant risk factor for diseases that compromise human healthspan. While most studies use a reductionist approach, studying one process in one cell/tissue to determine its role in aging, this study uses a more holistic approach, looking at the aging process from the organismal point of view. I find this angle very interesting, and it is intriguing to discover how events in one tissue might influence the response in others, and how this impacts the process of aging. While the mechanisms underlying the observations in this study remain to be identified, I believe that the type of interconnectivity described in this pre-print is of great interest to help us understand how biological systems work, and how they might collapse.

 

Open questions

  • In the previous paper describing signalling between neurons and cells of the intestine the authors showed that the signalling was dependent on Unc-13 mediated release of small clear vesicles. It remains to be determined if the events described in this pre-print are mediated by the same signaling molecule, and a major open question is of course: what is the identity of this cross-tissue signaling molecule? Are xbp-1 overexpressing neurons releasing a different set of neurotransmitters compared to neurons from a wildtype animal?
  • The ER-remodelling events described by the authors are present only at day 4 of the adult animal, and then disappears as the animal ages, yet these changes are enough to extend the lifespan of the animal. What are the downstream mechanisms of the described events that ultimately lead to increased stress resistance and longevity?
  • The function and nature of the circular ER-derived membranes (CERMs) remain unclear, and it is still to be determined whether these structures are identical to the ER “whorls” observed in ER-phagy or if these structures are a novel type of ER-derived vesicles. Could these structures perhaps be the result of a degradation pathway to remove selective parts of the ER membrane, similar to what has been described for mitochondria?7
  • The data in this paper describe a cell non-autonomous response in intestinal cells upon neuronal overexpression of a protein. It will be of interest to determine the physiological relevance for the described neuron-to-intestine signalling. Are similar cross-tissue responses seen during normal aging, or when the animal encounters stress? What other types of cross-tissue interactions are occurring and what are the consequences and the importance of this type of signalling?

 

References

  1. Rose MR. Evolutionary biology of aging. Oxford University Press: New York, 1991.
  2. Dillin A, Gottschling DE, Nystrom T. The good and the bad of being connected: the integrons of aging. Curr Opin Cell Biol 2014, 26: 107-112.
  3. Taylor RC, Dillin A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 2013, 153(7): 1435-1447.
  4. Ben-Zvi A, Miller EA, Morimoto RI. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A 2009, 106(35): 14914-14919.
  5. Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997, 90(6): 1031-1039.
  6. Daniele JR, Esping DJ, Garcia G, Parsons LS, Arriaga EA, Dillin A. “High-Throughput Characterization of Region-Specific Mitochondrial Function and Morphology”. Sci Rep 2017, 7(1): 6749.
  7. Hughes AL, Hughes CE, Henderson KA, Yazvenko N, Gottschling DE. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. Elife 2016, 5.

 

Tags: aging, autophagy, lipids, protein quality control, signalling

Posted on: 17th December 2018

Read preprint (1 votes)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Actomyosin-II facilitates long-range retrograde transport of large cargoes by controlling axonal radial contractility

    Tong Wang, Wei Li, Sally Martin, et al.



    Selected by Ivana Viktorinová

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Stable knockout and complementation of receptor expression using in vitro cell line derived reticulocytes for dissection of host malaria invasion requirements

    Timothy J Satchwell, Katherine E Wright, Katy L Haydn-Smith, et al.



    Selected by Alyson Smith

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    Activation of intracellular transport by relieving KIF1C autoinhibition

    Nida Siddiqui, Alice Bachmann, Alexander J Zwetsloot, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    1

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Franco Iborra

    1

    Basal extrusion drives cell invasion and mechanical stripping of E-cadherin

    John Fadul, Gloria M Slattum, Nadja M Redd, et al.



    Selected by William Hill

    Ribosomal DNA and the rDNA-binding protein Indra mediate non-random sister chromatid segregation in Drosophila male germline stem cells

    George Watase, Yukiko Yamashita



    Selected by Maiko Kitaoka

    An F-actin shell ruptures the nuclear envelope by sorting pore-dense and pore-free membranes in meiosis of starfish oocytes

    Natalia Wesolowska, Pedro Machado, Celina Geiss, et al.



    Selected by Maiko Kitaoka

    1

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.



    Selected by Lorenzo Lafranchi

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.

    AND

    Live-cell single RNA imaging reveals bursts of translational frameshifting

    Kenneth R Lyon Jr, Luis U Aguilera, Tatsuya Morisaki, et al.



    Selected by Nicola Stevenson

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    2

    The modular mechanism of chromocenter formation in Drosophila

    Madhav Jagannathan, Ryan Cummings, Yukiko M Yamashita



    Selected by Maiko Kitaoka

    1

    Also in the genetics category:

    MRE11-RAD50-NBS1 activates Fanconi Anemia R-loop suppression at transcription-replication conflicts

    Emily Yun-Chia Chang, James P Wells, Shu-Huei Tsai, et al.



    Selected by Katie Weiner

    1

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Ribosomal DNA and the rDNA-binding protein Indra mediate non-random sister chromatid segregation in Drosophila male germline stem cells

    George Watase, Yukiko Yamashita



    Selected by Maiko Kitaoka

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner

    Federico Germani, Daniel Hain, Denise Sternlicht, et al.



    Selected by Rohan Khadilkar

    Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila

    Charles A Seller, Chun-Yi Cho, Patrick H O'Farrell



    Selected by Gabriel Aughey

    Evidence for an Integrated Gene Repression Mechanism based on mRNA Isoform Toggling in Human Cells

    Ina Hollerer, Juliet C Barker, Victoria Jorgensen, et al.



    Selected by Clarice Hong

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Arterio-Venous Remodeling in the Zebrafish Trunk Is Controlled by Genetic Programming and Flow-Mediated Fine-Tuning

    Ilse Geudens, Baptiste Coxam, Silvanus Alt, et al.



    Selected by Andreas van Impel

    CRISPR/Cas9-mediated gene deletion of the ompA gene in an Enterobacter gut symbiont impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes

    Shivanand Hegde, Pornjarim Nilyanimit, Elena Kozlova, et al.



    Selected by Snehal Kadam

    millepattes micropeptides are an ancient developmental switch required for embryonic patterning

    Suparna Ray, Miriam I Rosenberg, Hélène Chanut-Delalande, et al.



    Selected by Erik Clark

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    Also in the molecular biology category:

    MRE11-RAD50-NBS1 activates Fanconi Anemia R-loop suppression at transcription-replication conflicts

    Emily Yun-Chia Chang, James P Wells, Shu-Huei Tsai, et al.



    Selected by Katie Weiner

    1

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Unlimited genetic switches for cell-type specific manipulation

    Jorge Garcia-Marques, Ching-Po Yang, Isabel Espinosa-Medina, et al.



    Selected by Rafael Almeida

    1

    Stable knockout and complementation of receptor expression using in vitro cell line derived reticulocytes for dissection of host malaria invasion requirements

    Timothy J Satchwell, Katherine E Wright, Katy L Haydn-Smith, et al.



    Selected by Alyson Smith

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Disrupting Transcriptional Feedback Yields an Escape-Resistant Antiviral

    Sonali Chaturvedi, Marie Wolf, Noam Vardi, et al.



    Selected by Pavithran Ravindran

    1

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.



    Selected by Lorenzo Lafranchi

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.

    AND

    Live-cell single RNA imaging reveals bursts of translational frameshifting

    Kenneth R Lyon Jr, Luis U Aguilera, Tatsuya Morisaki, et al.



    Selected by Nicola Stevenson

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Retrieving High-Resolution Information from Disordered 2D Crystals by Single Particle Cryo-EM

    Ricardo Righetto, Nikhil Biyani, Julia Kowal, et al.



    Selected by David Wright

    The modular mechanism of chromocenter formation in Drosophila

    Madhav Jagannathan, Ryan Cummings, Yukiko M Yamashita



    Selected by Maiko Kitaoka

    1

    The structural basis for release factor activation during translation termination revealed by time-resolved cryogenic electron microscopy

    Ziao Fu, Gabriele Indrisiunaite, Sandip Kaledhonkar, et al.



    Selected by David Wright

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    DNA microscopy: Optics-free spatio-genetic imaging by a stand-alone chemical reaction

    Joshua A. Weinstein, Aviv Regev, Feng Zhang



    Selected by Theo Sanderson

    2

    Close