Menu

Close

Focal adhesion kinase regulates early steps of myofibrillogenesis in cardiomyocytes

Nilay Taneja, Abigail C Neininger, Matthew R Bersi, W David Merryman, Dylan T Burnette

Preprint posted on February 07, 2018 https://www.biorxiv.org/content/early/2018/02/07/261248.

Broken hearts: FAK orchestrates force balance in the heart.

Selected by Vassilis Papalazarou

Background

Myofibrils are the foundational functional units within cardiomyocytes. They regulate the generation of contractile forces that form the basis of proper heart function. Myofibrils are essentially a series of sarcomeres that consist of ‘thick’ myosin and ‘thin’ actin filaments. Contact sites between cells and their environment that are known as focal adhesion complexes are not only necessary for the growth and assembly of myofibrils, but also for their physical coupling with their extracellular substrate. This generates a force balance between contractile and adhesive forces that drives normal heart muscle tension and contraction. Collapse of this force balance could be the basis of many cardiomyopathies. Focal adhesion kinase (FAK) has already been established as a major actor that is recruited to focal adhesion complexes. FAK triggers a series of signalling events, which regulate cell proliferation, survival and migration. However, its role in cardiac myocytes, especially during the de novo myofibril assembly, is not completely understood.

Novelty and Findings

By directing the differentiation of human-induced pluripotent stem cells (iPSCs) into human cardiomyocytes (hCMs), the authors were able to study the role of FAK in de novo assembly and maturation of myofibrils. Specifically, the inhibition of FAK to delay adhesion turnover resulted in a more stable coupling of myofibrils to their extracellular environment. This accelerated myofibrillogenesis and increased the viscosity of the filaments, indicating elevated force production. Therefore, FAK appears to be a key molecule that orchestrates the coupling of adhesion complexes to fibre force production during the maturation of myofibrils.

Outstanding Questions

How do sarcomeres get generated and grow within cardiomyocytes? Different models have been suggested for their formation and orientation within the cell; this difference, however, appears to stem mainly from the different experimental settings (1, 2). However, by following the de novo assembly of myofibrils, the authors of this study were able to demonstrate that coupling of cardiomyocytes to their substrate is crucial for this process. This suggests that mechanical uncoupling could severely affect the pathophysiology of cardiac muscles. Future research will shed more light on the mechanisms that regulate these procedures.

References

  1. Chopra, A., M.L. Kutys, K. Zhang, W.J. Polacheck, C.C. Sheng, R.J. Luu, J. Eyckmans, J.T. Hinson, J.G. Seidman, C.E. Seidman, and C.S. Chen. 2018. Force Generation via beta- Cardiac Myosin, Titin, and alpha-Actinin Drives Cardiac Sarcomere Assembly from Cell- Matrix Adhesions. Dev Cell. 44:87-96 e85.
  2. Fenix, A.M., N Taneja, A.C. Neininger, M.R. Visetsouk, B.R. Nixon, A.E. Manalo, J.R. Becker, S.W. Crawley, D.M. Bader, M.J. Tyska, J.H. Gutzman, and D.T. Burnette. 2017. Muscle specific stress fibers give rise to sarcomeres and are mechanistically distinct from stress fibers in non-muscle cells. bioRxiv 235424.

 

Posted on: 22nd February 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    The modular mechanism of chromocenter formation in Drosophila

    Madhav Jagannathan, Ryan Cummings, Yukiko M Yamashita



    Selected by Maiko Kitaoka

    1

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    Old fibroblasts secrete inflammatory cytokines that drive variability in reprogramming efficiency and may affect wound healing between old individuals

    Salah Mahmoudi, Elena Mancini, Alessandra Moore, et al.



    Selected by Shikha Nayar

    DNA microscopy: Optics-free spatio-genetic imaging by a stand-alone chemical reaction

    Joshua A. Weinstein, Aviv Regev, Feng Zhang



    Selected by Theo Sanderson

    2

    The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner

    Federico Germani, Daniel Hain, Denise Sternlicht, et al.



    Selected by Rohan Khadilkar

    Drosophila kinesin-8 stabilises kinetochore-microtubule interaction

    Tomoya Edzuka, Gohta Goshima



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    1

    Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma.

    Andrea Palamidessi, Chiara Malinverno, Emanuela FRITTOLI, et al.



    Selected by Tim Fessenden

    1

    Tension on kinetochore substrates is insufficient to prevent Aurora-triggered detachment

    Anna K de Regt, Charles L Asbury, Sue Biggins



    Selected by Angika Basant

    1

    Single-cell RNA sequencing reveals novel cell differentiation dynamics during human airway epithelium regeneration

    Sandra Ruiz Garcia, Marie Deprez, Kevin Lebrigand, et al.



    Selected by Rob Hynds

    1

    Actomyosin-driven tension at compartmental boundaries orients cell division independently of cell geometry in vivo

    Elena Scarpa, Cedric Finet, Guy Blanchard, et al.



    Selected by Ivana Viktorinová

    Molecular organization of integrin-based adhesion complexes in mouse Embryonic Stem Cells

    Shumin Xia, Evelyn K.F. Yim, Pakorn Kanchanawong

    AND

    Superresolution architecture of pluripotency guarding adhesions

    Aki Stubb, Camilo Guzmán, Elisa Närvä, et al.



    Selected by Nicola Stevenson, Amanda Haage

    Transcriptional initiation and mechanically driven self-propagation of a tissue contractile wave during axis elongation

    Anais Bailles, Claudio Collinet, Jean-Marc Philippe, et al.



    Selected by Sundar Naganathan

    1

    Bridging the divide: bacteria synthesizing archaeal membrane lipids

    Laura Villanueva, F. A. Bastiaan von Meijenfeldt, Alexander B. Westbye, et al.

    AND

    Extensive transfer of membrane lipid biosynthetic genes between Archaea and Bacteria

    Gareth A. Coleman, Richard D. Pancost, Tom A. Williams



    Selected by Gautam Dey

    1

    Revealing the nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy

    Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, et al.



    Selected by Gautam Dey

    Also in the developmental biology category:

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    A Scube2-Shh feedback loop links morphogen release to morphogen signaling to enable scale invariant patterning of the ventral neural tube

    Zach Collins, Kana Ishimatsu, Tony Tsai, et al.



    Selected by Teresa Rayon

    1

    Epiblast formation by Tead-Yap-dependent expression of pluripotency factors and competitive elimination of unspecified cells

    Masakazu Hashimoto, Hiroshi Sasaki



    Selected by Sarah Bowling, Teresa Rayon

    Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord

    Julien Delile, Teresa Rayon, Manuela Melchionda, et al.



    Selected by Reena Lasrado

    1

    The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner

    Federico Germani, Daniel Hain, Denise Sternlicht, et al.



    Selected by Rohan Khadilkar

    Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila

    Charles A Seller, Chun-Yi Cho, Patrick H O'Farrell



    Selected by Gabriel Aughey

    A histidine kinase gene is required for large radius root tip circumnutation and surface exploration in rice

    Kevin R Lehner, Isaiah Taylor, Erin N McCaskey, et al.



    Selected by Martin Balcerowicz

    Actomyosin-driven tension at compartmental boundaries orients cell division independently of cell geometry in vivo

    Elena Scarpa, Cedric Finet, Guy Blanchard, et al.



    Selected by Ivana Viktorinová

    Molecular organization of integrin-based adhesion complexes in mouse Embryonic Stem Cells

    Shumin Xia, Evelyn K.F. Yim, Pakorn Kanchanawong

    AND

    Superresolution architecture of pluripotency guarding adhesions

    Aki Stubb, Camilo Guzmán, Elisa Närvä, et al.



    Selected by Nicola Stevenson, Amanda Haage

    Transcriptional initiation and mechanically driven self-propagation of a tissue contractile wave during axis elongation

    Anais Bailles, Claudio Collinet, Jean-Marc Philippe, et al.



    Selected by Sundar Naganathan

    1

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis

    Min Zhu, Hirotaka Tao, Mohammad Samani, et al.



    Selected by Natalie Dye

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Synergy with TGFβ ligands switches WNT pathway dynamics from transient to sustained during human pluripotent cell differentiation

    Joseph Massey, Yida Liu, Omar Alvarenga, et al.



    Selected by Pierre Osteil

    1

    3D Tissue elongation via ECM stiffness-cued junctional remodeling

    Dong-Yuan Chen, Justin Crest, Sebastian J Streichan, et al.



    Selected by Sundar Naganathan
    Close