Menu

Close

Higher-Order Organization Principles of Pre-translational mRNPs

Mihir Metkar, Hakan Ozadam, Bryan R. Lajoie, Maxim Imakaev, Leonid A. Mirny, Job Dekker, Melissa J. Moore

Preprint posted on March 08, 2018 https://doi.org/10.1101/278747

It’s all about folds and RIPPLes: principles for higher order organization of pre-translational mRNPs

Selected by Carmen Adriaens

It’s all about folds and RIPPLes: principles for higher order organization of pre-translational mRNPs

 

The idea:

A new technique named RIPPLiT combines RNA immunoprecipitation with proximity ligation to determine folding of RNAs within macromolecular messenger ribonucleoprotein (mRNP) particles.

 

What is this paper about?

In recent years, it has become increasingly clear that the 3D conformation of DNA and the correct folding of chromatin into contact frequency-determined topologically associating domains (TADs) is tremendously important for cellular identity and function. To study mRNA architecture and compaction in conjunction with their protein binding partners, in this work the authors apply the concept of contact frequency (here: chimeric junction frequency) and 3D conformation of macromolecules to develop a technique they name RNA ImmunoPrecipitation and Proximity Ligation in Tandem (RIPPLiT). With this method, they investigate the architecture of RNA within stable mRNPs, allowing to study the biogenesis, stability, folding and compaction of transcripts inside ubiquitous megadalton particles that protect and shuttle the RNA prior to translation.

The authors use this new technique to reveal the secondary structure of pre-translational RNA complexes through pulldown in tandem of two Exon Junction Complex (EJC) components. By means of proof-of-concept, they determine inter- and intramolecular junctions in ribosomal RNA. Because [as the authors put it] “the rules governing RNA polymerase II (Pol II) transcript packaging remain largely undefined”, they analyze the structure of Pol II transcripts in these complexes. Unlike previous cross-linking based studies, they find that Pol II transcripts, in their dataset, do not exhibit significant intermolecular contacts. In addition, they find that, independent of the length of the transcript, messenger RNA folding is relatively non-specifically distributed throughout the mRNP structural scaffold, resulting in densely packed, but flexible rods, rather than highly structured particles.

In short, they provide the first insights into how mRNAs are packaged in conjunction with their protein interactors, which are proposed to both protect them from degradation and shuttle them to the correct destination after their biogenesis.

 

My opinion on this preprint:

I like the fact that the authors apply a well-established concept – that of the importance of 3D architecture of macromolecules and complexes – to the study of (m)RNPs. They can now apply this technique to find the conformation of flexible RNA molecules within the protein particles that dictate their fate (e.g. translation, degradation, localization etc.), rather than to have to depend mainly on computational modeling. Furthermore, a major advantage is that unlike most other techniques for studying conformation of RNA, with RIPPLiT, they overcome the requirement for direct base-pairing of the RNA molecules to uncover spatial proximity.

It may be possible that the authors of this preprint detect very little intermolecular mRNA contacts because of the specific design of the technique (i.e. the use of Harringtonine to halt translation prior to protein pulldown), and the particular focus on the EJC and pre-translational complexes, rather than necessarily finding a global rule for mRNP biology. For instance, in another recent preprint (Morf et al., bioRxiv, 2017, https://doi.org/10.1101/196147), abundant spatial proximities are described for different RNAs in distinct nuclear particles, and it would be interesting to integrate data from these two techniques and others to ultimately obtain an integrative view on mRNP/RNA particle constitution in the cell.

Further implementation of RIPPLiT with other proteins in various cellular compartments will help to understand how RNAs interact within themselves and how they behave with their binding partners. Indeed, with RIPPLiT, it will be possible to investigate how these interactions and the global mRNP conformation affect the functions of protein complexes, and vice-versa. RIPPLiT may also provide an opportunity to further uncover fundamental differences and similarities between non-coding and protein-coding RNAs, and may be a useful platform to study, potentially using RNA-guided interference experiments, how (m)RNP particles dynamically behave in different cellular contexts.

Figure:

This figure shows the schematic of the RIPPLiT workflow applied to the EJC in a mammalian cell line. Here, the authors adapt their previously developed technique (see Singh et al., Methods 2014, doi: 10.1016/j.ymeth.2013.09.013) for the initial steps of the protocol, followed by ligation of proximal RNA ends and sequencing. – This is Figure 1A from the preprint, made available under a CC-BY-NC-ND 4.0 International license.

Tags: 3d conformation, contact frequency, mrnp organization, ripplit, technique

Posted on: 2nd April 2018 , updated on: 4th April 2018

Read preprint (3 votes)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the biochemistry category:

    The autophagic membrane tether ATG2A transfers lipids between membranes

    Shintaro Maeda, Chinatsu Otomo, Takanori Otomo



    Selected by Sandra Malmgren Hill

    LTK is an ER-resident receptor tyrosine kinase that regulates secretion

    Federica G. Centonze, Veronika Reiterer, Karsten Nalbach, et al.



    Selected by Nicola Stevenson

    1

    Plant photoreceptors and their signaling components compete for binding to the ubiquitin ligase COP1 using their VP-peptide motifs

    Kelvin Lau, Roman Podolec, Richard Chappuis, et al.



    Selected by Martin Balcerowicz

    HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly

    C. Favard, J. Chojnacki, P. Merida, et al.



    Selected by Amberley Stephens

    Aqueous synthesis of a small-molecule lanthanide chelator amenable to copper-free click chemistry

    Stephanie Cara Bishop, Robert Winefield, Asokan Anbanandam, et al.



    Selected by Zhang-He Goh

    Hepatocyte-specific deletion of Pparα promotes NASH in the context of obesity

    Marion Regnier, Arnaud Polizzi, Sarra Smati, et al.



    Selected by Pablo Ranea Robles

    Microfluidic protein isolation and sample preparation for high resolution cryo-EM

    Claudio Schmidli, Stefan Albiez, Luca Rima, et al.



    Selected by David Wright

    ENDOSOMAL MEMBRANE TENSION CONTROLS ESCRT-III-DEPENDENT INTRA-LUMENAL VESICLE FORMATION

    Vincent Mercier, Jorge Larios, Guillaume Molinard, et al.



    Selected by Nicola Stevenson

    1

    Dynamic Aha1 Co-Chaperone Binding to Human Hsp90

    Javier Oroz, Laura J Blair, Markus Zweckstetter



    Selected by Reid Alderson

    1

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    1

    Structures of the Otopetrin Proton Channels Otop1 and Otop3

    Kei Saotome, Bochuan Teng, Che Chun (Alex) Tsui, et al.



    Selected by David Wright

    Inactive USP14 and inactive UCHL5 cause accumulation of distinct ubiquitinated proteins in mammalian cells

    Jayashree Chadchankar, Victoria Korboukh, Peter Doig, et al.



    Selected by Mila Basic

    S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate desmosome assembly and cell adhesion.

    Keith T Woodley, Mark O Collins



    Selected by Abagael Lasseigne

    3

    A complex containing lysine-acetylated actin inhibits the formin INF2

    Mu A, Tak Shun Fung, Arminja N. Kettenbach, et al.



    Selected by Laura McCormick

    1

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Also in the bioinformatics category:

    Accurate detection of m6A RNA modifications in native RNA sequences

    Huanle Liu, Oguzhan Begik, Morghan C Lucas, et al.



    Selected by Christian Bates

    1

    Slide-seq: A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolution

    Samuel G Rodriques, Robert R Stickels, Aleksandrina Goeva, et al.

    AND

    High-density spatial transcriptomics arrays for in situ tissue profiling

    Sanja Vickovic, Goekcen Eraslan, Johanna Klughammer, et al.



    Selected by Carmen Adriaens

    Endogenous CRISPR arrays for scalable whole organism lineage tracing

    James Cotterell, James Sharpe



    Selected by Irepan Salvador-Martinez

    Lineage tracing on transcriptional landscapes links state to fate during differentiation

    Caleb Weinreb, Alejo E Rodriguez-Fraticelli, Fernando D Camargo, et al.



    Selected by Yen-Chung Chen

    1

    Charting a tissue from single-cell transcriptomes

    Mor Nitzan, Nikos Karaiskos, Nir Friedman, et al.



    Selected by Irepan Salvador-Martinez

    Large-scale analyses of human microbiomes reveal thousands of small, novel genes and their predicted functions

    Hila Sberro, Nicholas Greenfield, Georgios Pavlopoulos, et al.



    Selected by Ganesh Kadamur

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    The embryonic transcriptome of Arabidopsis thaliana

    Falko Hofmann, Michael A Schon, Michael D Nodine



    Selected by Chandra Shekhar Misra

    1

    The landscape of antigen-specific T cells in human cancers

    Bo Li, Longchao Liu, Jian Zhang, et al.



    Selected by Rob Hynds

    1

    Single-cell RNA sequencing reveals novel cell differentiation dynamics during human airway epithelium regeneration

    Sandra Ruiz Garcia, Marie Deprez, Kevin Lebrigand, et al.



    Selected by Rob Hynds

    1

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Target-specific precision of CRISPR-mediated genome editing

    Anob M Chakrabarti, Tristan Henser-Brownhill, Josep Monserrat, et al.



    Selected by Rob Hynds

    1

    Precise tuning of gene expression output levels in mammalian cells

    Yale S. Michaels, Mike B Barnkob, Hector Barbosa, et al.



    Selected by Tim Fessenden

    1

    Template switching causes artificial junction formation and false identification of circular RNAs

    Chong Tang, Tian Yu, Yeming Xie, et al.



    Selected by Fabio Liberante

    An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics

    Ilias Angelidis, Lukas M Simon, Isis E Fernandez, et al.



    Selected by Rob Hynds

    1

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Jesse R Raab, Keriayn N Smith, Camarie C Spear, et al.



    Selected by Carmen Adriaens

    1

    Also in the cell biology category:

    The autophagic membrane tether ATG2A transfers lipids between membranes

    Shintaro Maeda, Chinatsu Otomo, Takanori Otomo



    Selected by Sandra Malmgren Hill

    LTK is an ER-resident receptor tyrosine kinase that regulates secretion

    Federica G. Centonze, Veronika Reiterer, Karsten Nalbach, et al.



    Selected by Nicola Stevenson

    1

    Distinct RhoGEFs activate apical and junctional actomyosin contractility under control of G proteins during epithelial morphogenesis

    Alain Garcia De Las Bayonas, Jean-Marc Philippe, Annemarie C. Lellouch, et al.



    Selected by Ivana Viktorinová

    1

    In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor

    Jacob P. Keller, Jonathan S. Marvin, Haluk Lacin, et al.



    Selected by Stephan Daetwyler

    1

    The spindle assembly checkpoint functions during early development in non-chordate embryos

    Janet Chenevert, Marianne Roca, Lydia Besnardeau, et al.



    Selected by Maiko Kitaoka

    Blue light induces neuronal-activity-regulated gene expression in the absence of optogenetic proteins

    Kelsey M. Tyssowski, Jesse M. Gray



    Selected by Zheng-Shan Chong

    Mutations in the Insulator Protein Suppressor of Hairy Wing Induce Genome Instability

    Shih-Jui Hsu, Emily C. Stow, James R. Simmons, et al.



    Selected by Maiko Kitaoka

    1

    Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues

    Adam K. Glaser, Nicholas P. Reder, Ye Chen, et al.



    Selected by Tim Fessenden

    1

    ATAT1-enriched vesicles promote microtubule acetylation via axonal transport

    Aviel Even, Giovanni Morelli, Chiara Scaramuzzino, et al.



    Selected by Stephen Royle

    1

    HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly

    C. Favard, J. Chojnacki, P. Merida, et al.



    Selected by Amberley Stephens

    Hepatocyte-specific deletion of Pparα promotes NASH in the context of obesity

    Marion Regnier, Arnaud Polizzi, Sarra Smati, et al.



    Selected by Pablo Ranea Robles

    Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases

    King Faisal Yambire, Lorena Fernandez-Mosquera, Robert Steinfeld, et al.



    Selected by Sandra Franco Iborra

    1

    Thyroid hormone regulates distinct paths to maturation in pigment cell lineages

    Lauren Saunders, Abhishek Mishra, Andrew J Aman, et al.



    Selected by Hannah Brunsdon

    1

    Kinesin-6 Klp9 plays motor-dependent and -independent roles in collaboration with Kinesin-5 Cut7 and the microtubule crosslinker Ase1 in fission yeast

    Masashi Yukawa, Masaki Okazaki, Yasuhiro Teratani, et al.



    Selected by I. Bouhlel

    A pair of E3 ubiquitin ligases compete to regulate filopodial dynamics and axon guidance

    Nicholas P Boyer, Laura E McCormick, Fabio L Urbina, et al.



    Selected by Angika Basant

    1

    SorCS1-mediated Sorting of Neurexin in Dendrites Maintains Presynaptic Function

    Luis Filipe Ribeiro, Ben Verpoort, Julie Nys, et al.



    Selected by Carmen Adriaens

    1

    Also in the molecular biology category:

    The autophagic membrane tether ATG2A transfers lipids between membranes

    Shintaro Maeda, Chinatsu Otomo, Takanori Otomo



    Selected by Sandra Malmgren Hill

    LTK is an ER-resident receptor tyrosine kinase that regulates secretion

    Federica G. Centonze, Veronika Reiterer, Karsten Nalbach, et al.



    Selected by Nicola Stevenson

    1

    Accurate detection of m6A RNA modifications in native RNA sequences

    Huanle Liu, Oguzhan Begik, Morghan C Lucas, et al.



    Selected by Christian Bates

    1

    Blue light induces neuronal-activity-regulated gene expression in the absence of optogenetic proteins

    Kelsey M. Tyssowski, Jesse M. Gray



    Selected by Zheng-Shan Chong

    Slide-seq: A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolution

    Samuel G Rodriques, Robert R Stickels, Aleksandrina Goeva, et al.

    AND

    High-density spatial transcriptomics arrays for in situ tissue profiling

    Sanja Vickovic, Goekcen Eraslan, Johanna Klughammer, et al.



    Selected by Carmen Adriaens

    Optical determination of absolute membrane potential

    Julia R. Lazzari-Dean, Anneliese M.M. Gest, Evan Miller



    Selected by James Marchant

    MicroRNA-mediated control of developmental lymphangiogenesis

    Hyun Min Jung, Ciara Hu, Alexandra M Fister, et al.



    Selected by Rudra Nayan Das

    Microfluidic protein isolation and sample preparation for high resolution cryo-EM

    Claudio Schmidli, Stefan Albiez, Luca Rima, et al.



    Selected by David Wright

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    1

    Structures of the Otopetrin Proton Channels Otop1 and Otop3

    Kei Saotome, Bochuan Teng, Che Chun (Alex) Tsui, et al.



    Selected by David Wright

    Central spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B

    Che-Hang Yu, Stefanie Redemann, Hai-Yin Wu, et al.



    Selected by Federico Pelisch

    1

    Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division

    Evgeny Zatulovskiy, Daniel F. Berenson, Benjamin R. Topacio, et al.



    Selected by Zaki Ahmad

    1

    Distinct ROPGEFs successively drive polarization and outgrowth of root hairs

    Philipp Denninger, Anna Reichelt, Vanessa Aphaia Fiona Schmidt, et al.



    Selected by Marc Somssich

    Inactive USP14 and inactive UCHL5 cause accumulation of distinct ubiquitinated proteins in mammalian cells

    Jayashree Chadchankar, Victoria Korboukh, Peter Doig, et al.



    Selected by Mila Basic

    Bacteriophage resistance alters antibiotic mediated intestinal expansion of enterococci

    Anushila Chatterjee, Cydney N Johnson, Phat Luong, et al.



    Selected by Yasmin Lau

    On-site ribosome remodeling by locally synthesized ribosomal proteins in axons

    Toshiaki Shigeoka, Max Koppers, Hovy Ho-Wai Wong, et al.



    Selected by Srivats Venkataramanan
    Close