Menu

Close

Insect wings and body wall evolved from ancient leg segments

Heather S Bruce, Nipam H Patel

Preprint posted on January 31, 2018 https://www.biorxiv.org/content/early/2018/01/31/244541

and

Two sets of wing homologs in the crustacean, Parhyale hawaiensis

Courtney M Clark-Hachtel, Yoshinori Tomoyasu

Preprint posted on December 18, 2017 https://www.biorxiv.org/content/early/2017/12/18/236281

How did insects get their wings? Two preprints use CRISPR/Cas9 knockdown approaches in a crustacean to shed light on this hitherto controversial question.

Selected by Erik Clark

Background

The invention of insect flight 350 million years ago was momentous for the history of life on earth. However, the evolutionary origin of insect wings has been debated, unresolved, for over a century. Were they outgrowths of the insect body wall, were they exaptations of crustacean “epipods” (projections from proximal leg segments, including structures such as gills), or were they formed from a merger of the two?

Model organism studies don’t help us much, because the way that Drosophila makes its wings (from imaginal discs) is extremely derived.  In recent years, however, studies in other insects have lent strong support to the “dual origin” hypothesis: in segments lacking wings, two separate tissues (the dorsal body wall and the pleural plates) express “wing” genes, and both contribute to ectopic wings formed in Hox gene knockdowns. However, it still hasn’t been clear whether these tissues ancestrally expressed wing genes, or simply co-opted them.

 

Key findings

Now, a pair of CRISPR/Cas9 studies in the amphipod crustacean, Paryhale hawaiensis, provide us with some clear-cut answers. Clark-Hachtel and Tomoyasu show that wing genes are necessary for the development of the dorsal body wall and epipods in Parhyale, demonstrating that the presence of a “wing” gene regulatory network (GRN) in these structures long predates the evolution of wings themselves.

In turn, Bruce and Patel knock down a number of leg patterning genes and show not only that the most proximal epipod in Parhyale is homologous to the insect pleural plate, but also that the dorsal “body wall” of both Parhyale and insects is actually a cryptic proximal leg segment, still present in other groups of crustaceans. Therefore, the two tissues from which wings develop in insects are both derived from crustacean epipods, and their shared gene expression results not from co-option, but from their common inheritance of an ancestral “epipod” GRN.

 

My take

This proposal offers an elegant solution to the wing origin debate, accounting for much of the evidence in favour of each of the three rival hypotheses. I also appreciated the accessibility of the text, which sidesteps much of the confusing morphological jargon of the insect/crustacean fields in favour of simple, colour-coded diagrams, allowing an outsider like me to follow the arguments. Of course, much more work will be required before we will understand how and why recognisable wings evolved within hexapods from these proto-structures. But as to the sticky question of their homology – case closed?

 

Related Research

Linz DM, Tomoyasu Y. (2018) Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in Tribolium. PNAS 115, E658-E667.

Prokob J, Pecharova M, Nel A, Hornschemeyer T, Krzeminska E, Krzeminski W, Engel MS. (2017). Paleozoic nymphal wing pads support dual model of insect wing origins. Current Biology, 27, 263-269.

Martin A, Serano JM, Jarvis E, Bruce HS, Wang J, Ray S, Barker CA, O’Connell LC, Patel NH. (2015). CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution. Current Biology 26, 14-26.

Tags: evo-devo, evolution

Posted on: 7th February 2018 , updated on: 19th February 2018

(2 votes)




  • Authors' response

    Yoshi Tomoyasu and Courtney Clark-Hachtel shared about Two sets of wing homologs in the crustacean, Parhyale hawaiensis

    Yoshi on the significance of the findings:

    The two studies complement each other, and together I believe that they tell an intriguing story about how complex novel structures evolve, which will no doubt significantly influence the future direction of the debates on the origin of insect wings, as well as on the evolution of morphological novelty in general.

     

    Courtney’s “behind the paper” story:

    One of my favorite moments from this project was the first time that I observed a ‘wingless crustacean’. When I saw that both dorsal body wall and proximal leg tissues were affected by wing gene knock-out in Parhyale and realized that this seemed to support what we had been seeing in wingless segments of insects, I got so excited. As scientists, we live for these eureka moments that can be few and far between in our work, and this moment was definitely a defining eureka moment for this project.

    1 comment

    1 year

    Rafael Galupa

    Thanks Erik! A great example of how a specific GRN has been exploited throughout evolution… And probably a good model to keep deepening our understanding of the mechanisms behind that. I wonder how easy it is to manipulate this crustacean?!

    Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    Dynamic Erasure of Random X-Chromosome Inactivation during iPSC Reprogramming

    Adrian Janiszewski, Irene Talon, Juan Song, et al.



    Selected by Sergio Menchero

    MicroRNA-mediated control of developmental lymphangiogenesis

    Hyun Min Jung, Ciara Hu, Alexandra M Fister, et al.



    Selected by Rudra Nayan Das

    Endogenous CRISPR arrays for scalable whole organism lineage tracing

    James Cotterell, James Sharpe



    Selected by Irepan Salvador-Martinez

    Planar differential growth rates determine the position of folds in complex epithelia

    Melda Tozluoğlu, Maria Duda, Natalie J Kirkland, et al.

    AND

    Buckling of epithelium growing under spherical confinement

    Anastasiya Trushko, Ilaria Di Meglio, Aziza Merzouki, et al.



    Selected by Sundar Naganathan

    2

    Establishment of the mayfly Cloeon dipterum as a new model system to investigate insect evolution

    Isabel Almudi, Carlos Martin-Blanco, Isabel Maria Garcia-Fernandez, et al.



    Selected by Ivan Candido-Ferreira

    1

    The Spatio-Temporal Control of Zygotic Genome Activation

    George Gentsch, Nick D. L. Owens, James C. Smith



    Selected by Meng Zhu

    Microtubules stabilize intercellular contractile force transmission during tissue folding



    Selected by Ivana Viktorinová

    Multilevel regulation of the glass locus during Drosophila eye development

    Cornelia Fritsch, F. Javier Bernardo-Garcia, Tim Humberg, et al.



    Selected by Gabriel Aughey

    1

    Lineage tracing on transcriptional landscapes links state to fate during differentiation

    Caleb Weinreb, Alejo E Rodriguez-Fraticelli, Fernando D Camargo, et al.



    Selected by Yen-Chung Chen

    1

    Distinct ROPGEFs successively drive polarization and outgrowth of root hairs

    Philipp Denninger, Anna Reichelt, Vanessa Aphaia Fiona Schmidt, et al.



    Selected by Marc Somssich

    A direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila

    Christopher M Uyehara, Daniel J McKay



    Selected by Natalie Dye

    A metabolic switch from OXPHOS to glycolysis is essential for cardiomyocyte proliferation in the regenerating heart

    Hessel Honkoop, Dennis de Bakker, Alla Aharonov, et al.



    Selected by Andreas van Impel

    1

    Reconstruction of the global neural crest gene regulatory network in vivo

    Ruth M Williams, Ivan Candido-Ferreira, Emmanouela Repapi, et al.



    Selected by Hannah Brunsdon

    Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissue

    Pauline E Jullien, Stefan Grob, Antonin Marchais, et al.



    Selected by Chandra Shekhar Misra

    1

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    2

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Also in the evolutionary biology category:

    Evolution-guided design of super-restrictor antiviral proteins reveals a breadth-versus-specificity tradeoff

    Rossana S Colon-Thillet, Emily S Hsieh, Laura Graf, et al.



    Selected by Connor Rosen

    Establishment of the mayfly Cloeon dipterum as a new model system to investigate insect evolution

    Isabel Almudi, Carlos Martin-Blanco, Isabel Maria Garcia-Fernandez, et al.



    Selected by Ivan Candido-Ferreira

    1

    Symmetry breaking in the embryonic skin triggers a directional and sequential front of competence during plumage patterning

    Richard Bailleul, Carole Desmarquet-Trin Dinh, Magdalena Hidalgo, et al.



    Selected by Alexa Sadier

    Bridging the divide: bacteria synthesizing archaeal membrane lipids

    Laura Villanueva, F. A. Bastiaan von Meijenfeldt, Alexander B. Westbye, et al.

    AND

    Extensive transfer of membrane lipid biosynthetic genes between Archaea and Bacteria

    Gareth A. Coleman, Richard D. Pancost, Tom A. Williams



    Selected by Gautam Dey

    1

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Eukaryotic acquisition of a bacterial operon

    Jacek Kominek, Drew T. Doering, Dana A. Opulente, et al.



    Selected by Lauren Neves

    millepattes micropeptides are an ancient developmental switch required for embryonic patterning

    Suparna Ray, Miriam I Rosenberg, Hélène Chanut-Delalande, et al.



    Selected by Erik Clark

    Conserved phosphorylation hotspots in eukaryotic protein domain families

    Marta J Strumillo, Michaela Oplova, Cristina Vieitez, et al.



    Selected by Gautam Dey

    Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses

    Kristina Zahonova, Zoltan Fussy, Erik Bircak, et al.



    Selected by Ellis O'Neill

    1

    The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization

    Sarah Herberg, Krista R Gert, Alexander Schleiffer, et al.



    Selected by James Gagnon

    Timed collinear activation of Hox genes during gastrulation controls the avian forelimb position

    Chloe Moreau, Paolo Caldarelli, Didier Rocancourt, et al.



    Selected by Wouter Masselink

    The genomic basis of colour pattern polymorphism in the harlequin ladybird

    Mathieu Gautier, Junichi Yamaguchi, Julien Foucaud, et al.



    Selected by Fillip Port

    Altering the temporal regulation of one transcription factor drives sensory trade-offs

    Ariane Ramaekers, Simon Weinberger, Annelies Claeys, et al.



    Selected by Mariana R.P. Alves

    A robust method for transfection in choanoflagellates illuminates their cell biology and the ancestry of animal septins

    David Booth, Heather Middleton, Nicole King



    Selected by Maya Emmons-Bell

    A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in the spider Parasteatoda tepidariorum

    Christian L. B. Paese, Anna Schoenauer, Daniel J. Leite, et al.



    Selected by Erik Clark

    1

    Germ layer specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm.

    Miguel Salinas-Saavedra, Amber Q. Rock, Mark Q. Martindale



    Selected by ClaireS & SophieM

    1

    Also in the genetics category:

    Dynamic Erasure of Random X-Chromosome Inactivation during iPSC Reprogramming

    Adrian Janiszewski, Irene Talon, Juan Song, et al.



    Selected by Sergio Menchero

    Kinesin-6 Klp9 plays motor-dependent and -independent roles in collaboration with Kinesin-5 Cut7 and the microtubule crosslinker Ase1 in fission yeast

    Masashi Yukawa, Masaki Okazaki, Yasuhiro Teratani, et al.



    Selected by I. Bouhlel

    Human Handedness: Genetics, Microtubules, Neuropsychiatric Diseases and Brain Language Areas

    Akira Wiberg, Gwenaelle Douaud, Michael Ng, et al.



    Selected by Jose Guerrero

    The Spatio-Temporal Control of Zygotic Genome Activation

    George Gentsch, Nick D. L. Owens, James C. Smith



    Selected by Meng Zhu

    Multilevel regulation of the glass locus during Drosophila eye development

    Cornelia Fritsch, F. Javier Bernardo-Garcia, Tim Humberg, et al.



    Selected by Gabriel Aughey

    1

    Distinct ROPGEFs successively drive polarization and outgrowth of root hairs

    Philipp Denninger, Anna Reichelt, Vanessa Aphaia Fiona Schmidt, et al.



    Selected by Marc Somssich

    A direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila

    Christopher M Uyehara, Daniel J McKay



    Selected by Natalie Dye

    MRE11-RAD50-NBS1 activates Fanconi Anemia R-loop suppression at transcription-replication conflicts

    Emily Yun-Chia Chang, James P Wells, Shu-Huei Tsai, et al.



    Selected by Katie Weiner

    1

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    2

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Ribosomal DNA and the rDNA-binding protein Indra mediate non-random sister chromatid segregation in Drosophila male germline stem cells

    George Watase, Yukiko Yamashita



    Selected by Maiko Kitaoka

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner

    Federico Germani, Daniel Hain, Denise Sternlicht, et al.



    Selected by Rohan Khadilkar

    Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila

    Charles A Seller, Chun-Yi Cho, Patrick H O'Farrell



    Selected by Gabriel Aughey
    Close